题意:给定一个图集\((V,E)\),求路径\(1...n\)的最大异或和,其中重复经过的部分也会重复异或

所求既任意一条\(1...n\)的路径的异或和,再异或上任意独立回路的组合的异或和(仔细想想,异或的过程是不是不断抵消并选取更优异或路径的过程?)

因此dfs返向边把环的异或值弄出来丢入线性基中贪心选取即可

顺便转载一下菊苣的独立回路小姿势(电路课似乎讲过但我摸鱼了XD)

首先有个结论:一个无向连通图G中有且仅有M-N+1个独立回路。

独立回路是指任意一个都不能由其他回路构成。

引用一段数学归纳法证明:

“M=N-1时,树,结论成立

设M=K时结论成立,当M=K+1时,任取G中一条边e,G-e中有K-N+1个独立回路,且

任取一个包含e的回路C,显然独立于之前的回路

任意两个包含e的回路C1与C2,C12=C1+C2是G-e的回路,C2不独立

故能且仅能增加一个包含e的独立回路

从而G中恰有(K+1)-N+1个独立回路,证毕”

另外,树只要添加一条边肯定成环,这是归纳最开始使用到的地方

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<bitset>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 3e5+11;
const double EPS = 1e-7;
typedef long long ll;
typedef unsigned long long ull;
const ll MOD = 1e9+7;
unsigned int SEED = 17;
const ll INF = 1ll<<60;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int to[MAXN<<1],nxt[MAXN<<1];ll cost[MAXN<<1];
int head[MAXN<<1],tot;
void init(){
memset(head,-1,sizeof head);
tot=0;
}
void add(int u,int v,ll w){
to[tot]=v;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
swap(u,v);
to[tot]=v;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
}
bool vis[MAXN];
ll dis[MAXN],tot2;
ll a[MAXN],b[66],n;
void dfs(int u,int fa){
vis[u]=1;
erep(i,u){
ll v=to[i],w=cost[i];
if(v==fa)continue;
if(!vis[v]){
dis[v]=dis[u]^w;
dfs(v,u);
}else{
a[++tot2]=dis[u]^dis[v]^w;//环的异或值
}
}
}
void cal(int n){
memset(b,0,sizeof b);
rep(i,1,n){
rrep(j,62,0){
if(a[i]>>j&1){
if(b[j]) a[i]^=b[j];
else{
b[j]=a[i];
rrep(k,j-1,0) if(b[k]&&(b[j]>>k&1))b[j]^=b[k];
rep(k,j+1,62) if(b[k]>>j&1) b[k]^=b[j];
break;
}
}
}
}
}
int main(){
int n,m;
while(cin>>n>>m){
init();
rep(i,1,m){
int u=read();
int v=read();
ll w=read();
add(u,v,w);
}
tot2=0;
memset(vis,0,sizeof vis);
memset(dis,0,sizeof dis);
dfs(1,-1);
cal(tot2);
ll ans=dis[n];
rep(i,0,62) ans=max(ans,ans^b[i]);
println(ans);
}
return 0;
}

BZOJ - 2115 独立回路 线性基的更多相关文章

  1. BZOJ 2115: [Wc2011] Xor 线性基 dfs

    https://www.lydsy.com/JudgeOnline/problem.php?id=2115 每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值. 那么把全部的环丢到 ...

  2. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

  3. BZOJ.2115.[WC2011]Xor(线性基)

    题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Soluti ...

  4. BZOJ 2460 [BeiJing2011]元素 ——线性基

    [题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...

  5. bzoj 2460 [BeiJing2011]元素 (线性基)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或 ...

  6. BZOJ.2460.[BeiJing2011]元素(线性基 贪心)

    题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...

  7. BZOJ 2460 元素(贪心+线性基)

    显然线性基可以满足题目中给出的条件.关键是如何使得魔力最大. 贪心策略是按魔力排序,将编号依次加入线性基,一个数如果和之前的一些数异或和为0就跳过他. 因为如果要把这个数放进去,那就要把之前的某个数拿 ...

  8. bzoj 3811: 玛里苟斯【线性基+期望dp】

    这个输出可是有点恶心啊--WA*inf,最后抄了别人的输出方法orz 还有注意会爆long long,要开unsigned long long 对于k==1,单独考虑每一位i,如果这一位为1则有0.5 ...

  9. BZOJ 2460: [BeiJing2011]元素 线性基

    2460: [BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力 ...

随机推荐

  1. PhoneGap 3.4 开发配置及问题

    PhoneGap这个坑爹货,开发确实迅速,又无需学习新知识,但又有N多深不见底坑,最大的坑无疑是性能,滑动时卡顿明显,iPhone5上性能比较好,大部分安卓上就坑爹了,神马动画效果最好少用:其次是不同 ...

  2. spring框架 事务 xml配置方式

    user=LF password=LF jdbcUrl=jdbc:oracle:thin:@localhost:1521:orcl driverClass=oracle.jdbc.driver.Ora ...

  3. ROS编译:catkin简析

    博客转载自:https://blog.csdn.net/zyh821351004/article/details/50388429 Catkin tutorials: http://wiki.ros. ...

  4. c语言实践 1/1-1/2+1/3-1/4+...

    其实这个题目和上面那个是一样的 /* 1/1-1/2+1/3-1/4+...1/n; */ int n = 1; double sum = 0; double frac = 0; int i = 1; ...

  5. ubuntu开启ssh

    SSH分客户端openssh-client和openssh-server如果你只是想登陆别的机器的SSH只需要安装openssh-client(ubuntu有默认安装,如果没有则sudo apt-ge ...

  6. 19、SOAP安装,运用与比对结果解释

    转载:http://www.dengfeilong.com/post/Soap2.html https://blog.csdn.net/zhu_si_tao/article/details/71108 ...

  7. 453D Little Pony and Elements of Harmony

    传送门 分析 我们可以将所有的b[i^j]直接对应到b[f(i^j)]上 于是显然可以fwt 我们对b进行t次fwt之后直接将答案与e0卷起来即可 注意由于模数不确定,我们可以将模数扩大$2^m$然后 ...

  8. Requests接口测试(五)

    使用python+requests编写接口测试用例 好了,有了前几章的的基础,写下来我把前面的基础整合一下,来一个实际的接口测试练习吧. 接口测试流程 1.拿到接口的URL地址 2.查看接口是用什么方 ...

  9. QT开发环境

    代码实现界面和槽 代码实现界面和槽 在上述工程的dialog.h中添加如下加黑代码: 加入头文件: #include <QLabel> #include <QLineEdit> ...

  10. vs2015+opencv3.3.1+ c++实现 静态背景下多运动目标提取,检测

    静止背景下运动物体的提取,跟踪出运动轨迹 下载地址 https://download.csdn.net/download/li_haoren/10761361 1.两遍扫描法得到第n帧的连通域,分离出 ...