In fact, Ptr alone can accomplish the task mentioned below.

Implementation see Ptr.h, main2.cpp. In C++11, we also have a better choice: std::shared_ptr (as you can see in main3.cpp).

main2.cpp

 #include "Ptr.h"

 #include <iostream>

 using namespace std;

 class Box
{
public:
void dosomething() { cout << "Box dosomething" << endl; }
Box() { cout << "Box cons" << endl; }
~Box() { cout << "Box des" << endl; }
}; Ptr<Box> global; Ptr<Box> func() {
Ptr<Box> pb(new Box());
return pb;
} void call(Ptr<Box> ptr)
{
if(ptr)
ptr->dosomething();
else
cout << "ptr is null" << endl;
} int main()
{
Ptr<Box> p = func();
p->dosomething();
(*p).dosomething();
Ptr<Box> p2 = p;
call(p2);
p2.reset();
cout << "after p2.reset" << endl;
global = p;
p.reset();
call(p);
(*global).dosomething();
global.reset();
cout << "after global.reset" << endl;
return ;
}

Ptr.h

 #ifndef PTR_H
#define PTR_H #include <cstddef> template <typename TYPE>
class Ptr { public:
void reset()
{
dec_use();
}
Ptr& operator=(const Ptr<TYPE> &copy)
{
dec_use();
obj = copy.obj;
use_count = copy.use_count;
if (use_count) ++*use_count;
return *this;
}
TYPE* operator->() { return obj; }
TYPE& operator*() { return *obj; }
const TYPE* operator->() const { return obj; }
const TYPE& operator*() const { return *obj; }
operator bool() const { return (obj != NULL); } Ptr(): obj(NULL), use_count(NULL) {}
Ptr(TYPE *obj_): obj(obj_), use_count(new int()) {}
Ptr(const Ptr &copy): obj(NULL), use_count(NULL)
{
obj = copy.obj;
use_count = copy.use_count;
if (use_count) ++*use_count;
}
~Ptr()
{
dec_use();
}
private:
void dec_use() // decrease use_count
{
if (use_count != NULL) {
if( --*use_count == ) {
delete obj;
delete use_count;
}
obj = NULL;
use_count = NULL;
}
}
TYPE *obj; // the actual object
int *use_count; // number of Ptr objects point to 'obj'
}; #endif // PTR_H

main3.cpp

 #include <memory>

 #include <iostream>

 using namespace std;

 class Box
{
public:
void dosomething() { cout << "Box dosomething" << endl; }
Box() { cout << "Box cons" << endl; }
~Box() { cout << "Box des" << endl; }
}; shared_ptr<Box> global; shared_ptr<Box> func() {
shared_ptr<Box> pb(new Box());
return pb;
} void call(shared_ptr<Box> ptr)
{
if(ptr)
ptr->dosomething();
else
cout << "ptr is null" << endl;
} int main()
{
shared_ptr<Box> p = func();
p->dosomething();
(*p).dosomething();
shared_ptr<Box> p2 = p;
call(p2);
p2.reset();
cout << "after p2.reset" << endl;
global = p;
p.reset();
call(p);
(*global).dosomething();
global.reset();
cout << "after global.reset" << endl;
return ;
}

---------------------------------------- stupidest iead I've ever seen -----------------------------------------

|                                                                                                                                                         |

|                                                                                                                                                         |

The idea is to create a Ptr type that acts like a reference in Java.

And A Garbage Collector (MemMgr) type that acts like a garbage collector in Java.

Just a toy. :D

Question: why not delete all memory fragments managed by MemMgr in its destructor?

Answer: If you want to delete a piece of memory, you must cast the void* pointer to the exact type of that memory. However, there's no way for a MemMgr to know the type of the memory pieces, because type information is not managed by MemMgr. And you can't use the free function from <cstdlib>. For example, if you write "MemMgr *p = new MemMgr; free(p);" you'll find that the destructor of MemMgr is not called. And As shown in "test.cpp". "free" only works in pair with "malloc" or "realloc" etc functions in <cstdlib>. "delete" should work in pair with "new".

see this question: http://stackoverflow.com/questions/1518711/how-does-free-know-how-much-to-free

test.cpp

 #include "MemMgr.h"
#include <cstdlib> int main()
{
MemMgr *p = new MemMgr;
free(p);
return ;
}

main.cpp

 #include "MemMgr.h"

 #include <iostream>

 using namespace std;

 class Box
{
public:
void dosomething() { cout << "Box dosomething" << endl; }
Box() { cout << "Box cons" << endl; }
~Box() { cout << "Box des" << endl; }
}; Ptr<Box> global;
MemMgr mgr; Ptr<Box> func() {
Ptr<Box> pb = mgr.regist(new Box());
return pb;
} int main()
{
Ptr<Box> p = func();
p->dosomething();
(*p).dosomething();
Ptr<Box> p2 = p;
p2->dosomething();
cout << "end of main" << endl;
global = p2;
return ;
}

MemMgr.h

 #ifndef MEMMGR_H
#define MEMMGR_H #include <map> template <typename TYPE>
class Ptr; /**
MemMgr take the idea of Garbage Collector
from the Java language. It's just much simple
and limited.
*/
class MemMgr
{
template <typename T> friend class Ptr;
private:
typedef unsigned long count;
template <typename T> void login(T* ptr_obj);
template <typename T> void logout(T* ptr_obj);
std::map<void*, count> cmap;
public:
MemMgr();
/**
Client is responsible to ensure obj is in the heap,
and make sure only use Ptr objects rather than ordinary
pointers when manipulating objects managed by MemMgr. Otherwise the behavior of the MemMgr is undefined. If MemMgr is destroyed before any Ptr object managed
by it, all Ptr objects managed by that MemMgr are corrupted
and their behavior is undefined, which eventually leads to
memory leak. So it's crucial to make sure MemMgr is not destroyed
before ALL Ptr objects managed by it are destroyed.
*/
template <typename T> Ptr<T> regist(T *obj);
~MemMgr(); }; /**
Ptr acts like a reference in java.
*/
template <typename TYPE>
class Ptr { friend class MemMgr; public:
Ptr& operator=(const Ptr<TYPE> &copy)
{
if(copy) {
logout();
obj = copy.obj;
mgr = copy.mgr;
copy.mgr->login(&obj);
} // else leaves obj and mgr NULL
return *this;
}
TYPE* operator->() { return obj; }
TYPE& operator*() { return *obj; }
const TYPE* operator->() const { return obj; }
const TYPE& operator*() const { return *obj; }
operator bool() const { return ( (obj != NULL) && (mgr != NULL) ); } Ptr(): obj(NULL), mgr(NULL) {}
Ptr(const Ptr &copy): obj(NULL), mgr(NULL)
{
if(copy) {
obj = copy.obj;
mgr = copy.mgr;
copy.mgr->login(obj);
}
}
~Ptr()
{
logout();
}
private:
Ptr(TYPE *_obj, MemMgr *_mgr): obj(_obj), mgr(_mgr)
{
mgr->login(obj);
}
void logout() {
if (*this) {
mgr->logout(obj); obj = NULL; mgr = NULL;
}
}
TYPE *obj;
MemMgr *mgr;
}; template <typename T> Ptr<T> MemMgr::regist(T *obj)
{
return Ptr<T>(obj, this);
} template <typename T>
void MemMgr::login(T* ptr_obj)
{
std::map<void*, count>::iterator iter = cmap.find(ptr_obj);
if (iter != cmap.end()) {
++(iter->second);
} else {
cmap.insert(std::pair<void*, count>(ptr_obj, ));
}
} template <typename T>
void MemMgr::logout(T* ptr_obj)
{
std::map<void*, count>::iterator iter = cmap.find(ptr_obj);
if (iter != cmap.end()) {
--(iter->second);
if (iter->second == ) {
T *p = (T*)(iter->first);
delete p;
}
}
} #endif // MEMMGR_H

MemMgr.cpp

 #include "MemMgr.h"

 #include <iostream>

 using namespace std;

 MemMgr::MemMgr()
{
cout << "MemMgr cons" << endl;
} MemMgr::~MemMgr()
{
cout << "MemMgr des" << endl;
}

c++ [wrong]simple "Garbage Collector"的更多相关文章

  1. [GC]一个简单的Garbage Collector的实现

    前言: 最近看了google的工程师写的一个非常简单的垃圾收集器,大概200多行C代码,感叹大牛总能够把复杂的东西通过很简单的语言和代码表达出来.为了增加自己的理解,决定把大牛的想法和代码分析一遍,与 ...

  2. 一个简单的Garbage Collector的实现

    一个简单的Garbage Collector的实现 前言: 最近看了google的工程师写的一个非常简单的垃圾收集器,大概200多行C代码,感叹大牛总能够把复杂的东西通过很简单的语言和代码表达出来.为 ...

  3. AGC027 B - Garbage Collector 枚举/贪心

    目录 题目链接 题解 代码 题目链接 AGC027 B - Garbage Collector 题解 对于一组选取组的最优方案为,走到一点,然后顺着路径往回取点 设选取点坐标升序为{a,b,c,d} ...

  4. New Garbage Collector http://wiki.luajit.org/New-Garbage-Collector

    New Garbage Collector http://wiki.luajit.org/New-Garbage-Collector GC Algorithms This is a short ove ...

  5. agc 027 B - Garbage Collector

    B - Garbage Collector https://agc027.contest.atcoder.jp/tasks/agc027_b 题意: x坐标轴上n个垃圾,有一个机器人在从原点,要清扫垃 ...

  6. Getting Started with the G1 Garbage Collector(译)

    原文链接:Getting Started with the G1 Garbage Collector 概述 目的 这篇教程包含了G1垃圾收集器使用和它如何与HotSpot JVM配合使用的基本知识.你 ...

  7. Erlang Garbage Collector

    Erlang Garbage Collector | Erlang Solution blog https://www.erlang-solutions.com/blog/erlang-garbage ...

  8. 提交并发量的方法:Java GC tuning :Garbage collector

    三色算法,高效率垃圾回收,jvm调优 Garbage collector:垃圾回收器 What garbage? 没有任何引用指向它的对象 JVM GC回收算法: 引用计数法(ReferenceCou ...

  9. The Go Blog Getting to Go: The Journey of Go's Garbage Collector

    Getting to Go: The Journey of Go's Garbage Collector https://blog.golang.org/ismmkeynote

随机推荐

  1. zip压缩与解压文件夹或文件

    import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.File; import ...

  2. 使用Rabbitmq.client反序列化包含Mongo.Bson.ObjectId属性实体类时抛异常

         原因分析:    队列中存储的objectId属性是字符串,反序列化字符串转换成objectid类型时报错     解决方法:    1.定义ObjectIdConverter属性类,反序列 ...

  3. python函数getopt用法

    python内建模块,用来处理命令行参数 格式:getopt(args, shortopts, longopts = []) 参数args一般是sys.argv[1:]sys.argv[0]表示执行文 ...

  4. 使用InstallUtil对Windows服务进行安装与卸载

    关于Visual Studio 2012中使用InstallUtil对Windows服务进行安装与卸载的文章,在MSDN中的http://msdn.microsoft.com/en-us/librar ...

  5. perl学习笔记——文件测试

    文件测试主要用于查看如文件是否存在.文件大小.文件更新时间等信息. 文件测试操作符 -e  测试文件是否存在: die "Oops!A file called '$filename' alr ...

  6. Unity iOS打开AppStore评星页面,浅谈Application.OpenURL()方法。

    http://fairwoodgame.com/blog/?p=38 Unity iOS打开AppStore评星页面,浅谈Application.OpenURL()方法. Posted in  Uni ...

  7. EJB学习笔记之十(BMT事务和CMT事务)

     1.前言 前两篇博客主要介绍了与事务相关的知识.比如事务的一些特性,以及并发产生的问题.本篇来解说一下EJB中两种处理事务的方式.一种是以生命式方式来管理事务(CMT):还有一种则是在EJB内部使用 ...

  8. java注解说明

    * 元注解@Target,@Retention,@Documented,@Inherited * * @Target 表示该注解用于什么地方,可能的 ElemenetType 参数包括: * Elem ...

  9. MySQL错误Another MySQL daemon already running with the same unix socket.v

    etc/init.d/mysqld start 结果显示 Another MySQL daemon already running with the same unix socket.显示另一个MyS ...

  10. UICollectionViews有了简单的重排功能

    代码地址如下:http://www.demodashi.com/demo/13213.html 一.前言 我是UICollectionView的忠实粉丝.这个类比起它的老哥UITableView类具有 ...