BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 419  Solved: 278

Description

有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000。现在Farmer John要把这些奶牛分成若干段,定义每段的不河蟹度为:若这段里有k个不同的数,那不河蟹度为k*k。那总的不河蟹度就是所有段的不河蟹度的总和。

Input

第一行:两个整数N,M

第2..N+1行:N个整数代表每个奶牛的编号

Output

一个整数,代表最小不河蟹度

Sample Input

13 4
1
2
1
3
2
2
3
4
3
4
3
1
4

Sample Output

11
 /*因为这个题目分组是没有限制的,所以我们DP方程不能把分组作为一个状态
正解:最差情况每个数位于一段,ans=n,所以若有一段区间内不同的数的数量<=sqrt(n),否则结果一定不是最优。
nsqrt(n)求法:维护b[j],c[j],f[j],pre[j]数组。
b[j]表示b[j]+1...i有j个不同的数的区间的最左端。
那么可以知道f[i]=min{f[i],f[b[j]]+j*j};这样时间复杂度就降了下来
如何维护b[j]数组,当i向后移动一位的时候,pre[a[i]]记录a[i]出现的最后一个位置是哪里?
那么:i++后,pre[a[i]]<=b[j],说明b[j]+1...到i这段序列的不同数的数目就是j+1了,我们用c[j]来记录这个情况,顺便更新pre[a[i]],而且始终维护c[j]==j;
那么b[j]仍然是符合题意的。
维护c[j]就要从b[j]+1开始向后面删除数据,删除时判断若pre[a[t]]>t,则说明是删除了相同的数,对于最后的和谐值没有影响,所以还要删数
知道pre[a[t]]<=t,删除a[t],顺便更新b[j]的位置
*/
#define N 40100
#include<iostream>
using namespace std;
#include<cstdio>
#include<cmath>
#include<cstring>
int f[N],b[N],c[N],pre[N],a[N];
int n,m;
void input()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)
scanf("%d",&a[i]);
memset(pre,-,sizeof(pre));/*别忘了设置为-1,因为下面会与b[j]==0的初值进行比较*/
memset(f,,sizeof(f));
}
void chuli()
{
int sqrtn=sqrt(n+0.5);
f[]=;/*初始化,前0个数的不和谐值为0,*/
for(int i=;i<=n;++i)
{
for(int j=;j<=sqrtn;++j)
{
if(pre[a[i]]<=b[j])
c[j]++;/*统计新加入的数是不是符合要求*/
}
pre[a[i]]=i;/*更新pre*/
for(int j=;j<=sqrtn;++j)
{
if(c[j]>j)/*删除数,缩短序列*/
{
int t=b[j]+;
while(pre[a[t]]>t) ++t;
b[j]=t;c[j]--;
}
}
for(int j=;j<=sqrtn;++j)
f[i]=min(f[i],f[b[j]]+j*j);/*更新f*/
}
}
int main()
{
input();
chuli();
cout<<f[n]<<endl;
return ;
}
/*这个题目既然不以划分次数为状态,那么可以考虑,划分序列的长度*/

DP经典 BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生的更多相关文章

  1. bzoj 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生【dp】

    参考:http://hzwer.com/3917.html 好神啊 注意到如果分成n段,那么答案为n,所以每一段最大值为\( \sqrt{n} \) 先把相邻并且值相等的弃掉 设f[i]为到i的最小答 ...

  2. bzoj:1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...

  3. 【BZOJ】1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    [算法]DP+数学优化 [题意]把n个1~m的数字分成k段,每段的价值为段内不同数字个数的平方,求最小总价值.n,m,ai<=40000 [题解] 参考自:WerKeyTom_FTD 令f[i] ...

  4. BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP

    BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= ...

  5. [BZOJ1584] [Usaco2009 Mar]Cleaning Up 打扫卫生(DP)

    传送门 不会啊,看了好久的题解才看懂 TT 因为可以直接分成n段,所以就得到一个答案n,求解最小的答案,肯定是 <= n 的, 所以每一段中的不同数的个数都必须 <= sqrt(n),不然 ...

  6. BZOJ1584 [Usaco2009 Mar]Cleaning Up 打扫卫生

    令$f[i]$表示以i为结尾的答案最小值,则$f[i] = min \{f[j] + cnt[j + 1][i]^2\}_{1 \leq j < i}$,其中$cnt[j + 1][i]$表示$ ...

  7. [bzoj1587] [Usaco2009 Mar]Cleaning Up 打扫卫生

    首先(看题解)可得...分成的任意一段中的不同颜色个数都<=根号n...不然的话直接分成n段会更优= = 然后就好做多了.. 先预处理出对于每头牛i,和它颜色相同的前一头和后一头牛的位置. 假设 ...

  8. 【动态规划】bzoj1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    思路自然的巧妙dp Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分 ...

  9. bzoj1584 [Usaco2009 Mar]Cleaning Up 打扫卫生 动态规划+思维

    Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...

随机推荐

  1. Hash破解神器:Hashcat的简单使用

    Hash破解神器:Hashcat的简单使用 2014-06-10 21:02:42|  分类: 离线密码破解 |  标签:密码字典  rar密码破解  zip密码破解  密码破解  |举报|字号 订阅 ...

  2. NASA: SpaceX的猎鹰9号火箭将龙飞船发射到国际空间站

    At 5:42 a.m. EDT Friday, June 29, 2018, SpaceX’s Dragon spacecraft lifts off on a Falcon 9 rocket fr ...

  3. $NTT$(快速数论变换)

    - 概念引入 - 阶 对于$p \in N_+$且$(a, \ p) = 1$,满足$a^r \equiv 1 (mod \ p)$的最小的非负$r$为$a$模$p$意义下的阶,记作$\delta_p ...

  4. Oracle安装出现报错

    报错信息如下: >>> Couldnot execute auto check for display colors using command /usr/bin/xdpyinfo. ...

  5. redis源码分析——aofrewrite

    随着redis的运行,aof会不断膨胀(对于一个key会有多条aof日志),导致通过aof恢复数据时,耗费大量不必要的时间.redis提供的解决方案是aof rewrite.根据db的内容,对于每个k ...

  6. PostGIS 操作geometry方法

    WKT定义几何对象格式: POINT(0 0) ——点 LINESTRING(0 0,1 1,1 2) ——线 POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2 ...

  7. NOIP填坑计划

    斗地主 华容道 开车旅行 疫情控制 飞扬的小鸟 Mayan游戏 天天爱跑步

  8. Percona XtraDB Cluster(PXC) Mysql 集群

    Percona XtraDB Cluster(PXC)   ---原理介绍篇         目录 一.简介 1 二.优缺点 2 三.区别/局限性 3 四. PXC复制原理 4 五. 服务解释 5   ...

  9. js实现静态页面跳转传参

    最近有个项目: 存静态web服务,一个新闻页面列表出所有新闻摘要信息,然后通过点击新闻详情访问到该新闻的详情页面: 新闻展示的页面通过ajax请求接口获取到新闻的摘要信息,预计想通过id的方式访问到新 ...

  10. beego学习笔记(4):开发文档阅读(2)

    bee工具的安装和使用 bee 工具是一个为了协助快速开发 beego 项目而创建的项目,通过 bee 您可以很容易的进行 beego 项目的创建.热编译.开发.测试.和部署. go get gith ...