DP经典 BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生
BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 419 Solved: 278
Description
有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000。现在Farmer John要把这些奶牛分成若干段,定义每段的不河蟹度为:若这段里有k个不同的数,那不河蟹度为k*k。那总的不河蟹度就是所有段的不河蟹度的总和。
Input
第一行:两个整数N,M
第2..N+1行:N个整数代表每个奶牛的编号
Output
一个整数,代表最小不河蟹度
Sample Input
1
2
1
3
2
2
3
4
3
4
3
1
4
Sample Output
/*因为这个题目分组是没有限制的,所以我们DP方程不能把分组作为一个状态
正解:最差情况每个数位于一段,ans=n,所以若有一段区间内不同的数的数量<=sqrt(n),否则结果一定不是最优。
nsqrt(n)求法:维护b[j],c[j],f[j],pre[j]数组。
b[j]表示b[j]+1...i有j个不同的数的区间的最左端。
那么可以知道f[i]=min{f[i],f[b[j]]+j*j};这样时间复杂度就降了下来
如何维护b[j]数组,当i向后移动一位的时候,pre[a[i]]记录a[i]出现的最后一个位置是哪里?
那么:i++后,pre[a[i]]<=b[j],说明b[j]+1...到i这段序列的不同数的数目就是j+1了,我们用c[j]来记录这个情况,顺便更新pre[a[i]],而且始终维护c[j]==j;
那么b[j]仍然是符合题意的。
维护c[j]就要从b[j]+1开始向后面删除数据,删除时判断若pre[a[t]]>t,则说明是删除了相同的数,对于最后的和谐值没有影响,所以还要删数
知道pre[a[t]]<=t,删除a[t],顺便更新b[j]的位置
*/
#define N 40100
#include<iostream>
using namespace std;
#include<cstdio>
#include<cmath>
#include<cstring>
int f[N],b[N],c[N],pre[N],a[N];
int n,m;
void input()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)
scanf("%d",&a[i]);
memset(pre,-,sizeof(pre));/*别忘了设置为-1,因为下面会与b[j]==0的初值进行比较*/
memset(f,,sizeof(f));
}
void chuli()
{
int sqrtn=sqrt(n+0.5);
f[]=;/*初始化,前0个数的不和谐值为0,*/
for(int i=;i<=n;++i)
{
for(int j=;j<=sqrtn;++j)
{
if(pre[a[i]]<=b[j])
c[j]++;/*统计新加入的数是不是符合要求*/
}
pre[a[i]]=i;/*更新pre*/
for(int j=;j<=sqrtn;++j)
{
if(c[j]>j)/*删除数,缩短序列*/
{
int t=b[j]+;
while(pre[a[t]]>t) ++t;
b[j]=t;c[j]--;
}
}
for(int j=;j<=sqrtn;++j)
f[i]=min(f[i],f[b[j]]+j*j);/*更新f*/
}
}
int main()
{
input();
chuli();
cout<<f[n]<<endl;
return ;
}
/*这个题目既然不以划分次数为状态,那么可以考虑,划分序列的长度*/
DP经典 BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生的更多相关文章
- bzoj 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生【dp】
参考:http://hzwer.com/3917.html 好神啊 注意到如果分成n段,那么答案为n,所以每一段最大值为\( \sqrt{n} \) 先把相邻并且值相等的弃掉 设f[i]为到i的最小答 ...
- bzoj:1584: [Usaco2009 Mar]Cleaning Up 打扫卫生
Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...
- 【BZOJ】1584: [Usaco2009 Mar]Cleaning Up 打扫卫生
[算法]DP+数学优化 [题意]把n个1~m的数字分成k段,每段的价值为段内不同数字个数的平方,求最小总价值.n,m,ai<=40000 [题解] 参考自:WerKeyTom_FTD 令f[i] ...
- BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP
BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= ...
- [BZOJ1584] [Usaco2009 Mar]Cleaning Up 打扫卫生(DP)
传送门 不会啊,看了好久的题解才看懂 TT 因为可以直接分成n段,所以就得到一个答案n,求解最小的答案,肯定是 <= n 的, 所以每一段中的不同数的个数都必须 <= sqrt(n),不然 ...
- BZOJ1584 [Usaco2009 Mar]Cleaning Up 打扫卫生
令$f[i]$表示以i为结尾的答案最小值,则$f[i] = min \{f[j] + cnt[j + 1][i]^2\}_{1 \leq j < i}$,其中$cnt[j + 1][i]$表示$ ...
- [bzoj1587] [Usaco2009 Mar]Cleaning Up 打扫卫生
首先(看题解)可得...分成的任意一段中的不同颜色个数都<=根号n...不然的话直接分成n段会更优= = 然后就好做多了.. 先预处理出对于每头牛i,和它颜色相同的前一头和后一头牛的位置. 假设 ...
- 【动态规划】bzoj1584: [Usaco2009 Mar]Cleaning Up 打扫卫生
思路自然的巧妙dp Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分 ...
- bzoj1584 [Usaco2009 Mar]Cleaning Up 打扫卫生 动态规划+思维
Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...
随机推荐
- c语言学习笔记.指针.
指针: 一个变量,其值为另一个变量的地址,即,内存位置的直接地址. 声明: int *ptr; /* 一个整型的指针,指针指向的类型是整型 */ double *ptr; /* 一个 double 型 ...
- mysql数据库单表增删改查命令
数据库DB-database-mysql 课程安排 第一天: 1.数据库定义以及设计 2.mysql服务端的安装 3.mysql-dos操作 库的操作 表的操作 4.mysql客户端navicate工 ...
- OGG相关操作
参数文件详解: 1)truncate ogg 进程: Manager进程:manager进程是配置在源端和目标端 Extract(抽取)进程:部署在源端,用于捕获数据表或者日志中的数据文件: Pump ...
- perl6正则 5: [ ] / | / ||
也就是可以把多种要匹配的写进[ ] 中, 第种用 | 分开就行了. | 与 || 有差别 |的话, 当匹配位置 相同时, 会取最长的, 而 || , 当前面的匹配成功, 后面的就不会再去匹配. / / ...
- 2. 数据库文件配置与简单操作 Model / M()
官方文档说明位置: Thinkphp/Conf/convention.php 内容说明如下: 'DB_TYPE' => '', // 数据库类型 'DB_HOST' => '', // 服 ...
- C语言回调函数总结
/* Main program ---calls--> Library function ---calls--> Callback funtion */ #include <stdi ...
- 用ELK搭建简单的日志收集分析系统【转】
缘起 在微服务开发过程中,一般都会利用多台服务器做分布式部署,如何能够把分散在各个服务器中的日志归集起来做分析处理,是一个微服务服务需要考虑的一个因素. 搭建一个日志系统 搭建一个日志系统需要考虑一下 ...
- Windows 和Linux 误删除后的恢复
ext文件系统上删除文件,可以恢复:extundelete; windows 恢复删除文件: final data v2.0汉化版 和 easyrecovery
- windows下安装多个mysql
1.正常安装mysql5.1.33 安装服务名为mysql3306 安装目录d:\mysql5.1\3306 安装完成后,关闭服务 ① 复制安装文件 将默认安装目录C:\Documents and S ...
- python_线程、进程和协程
线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. #!/usr/bin/env python #coding=utf-8 __author__ = 'yinjia' i ...