bzoj 4769: 超级贞鱼 -- 归并排序
4769: 超级贞鱼
Time Limit: 1 Sec Memory Limit: 128 MB
Description
Input
Output
Sample Input
6
5 2 6 3 1 7
0
Sample Output
7
HINT
对于全部数据:Ai≤10^9。
30%的数据:n,k<=400;
70%的数据:n,k<=10000;
100%的数据:n,k<=100000;
命题by benny
Source
upd: 好吧,经过出题人的不懈努力,我的程序终于TLE了。。qwq
那么优化一下,听唐大爷说不论怎么变换,逆序对的数总是不变的(似乎好有道理qaq),那么离散化什么的都不需要辣,只要一次归并排序就好
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2000100
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int a[N],tmp[N],k;
ll n,ji;
void gb(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>,cnt=l,h1=l,h2=mid+;
gb(l,mid);gb(mid+,r);
while(h1<=mid&&h2<=r)
{
while(a[h1]>a[h2])
{
tmp[cnt++]=a[h2];
h2++;
ji+=mid-h1+;
if(h2>r) break;
}
tmp[cnt++]=a[h1];
h1++;
}
for(int i=h1;i<=mid;i++) tmp[cnt++]=a[i];
for(int i=h2;i<=r;i++) tmp[cnt++]=a[i];
for(int i=l;i<=r;i++) a[i]=tmp[i];
}
int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++) a[i]=read();
k=read();gb(,n);
printf("%lld\n",ji);
}
归并排序裸题,我们会发现当重排次数 n 为偶数时,其等价于原数列,(其实就是相当于一个二元的结构体,一次按第一位排序,第二次按第二位排序),然后就是相当于求一个数列的逆序对个数
初始的时候先离散化一下就好(TLE)
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000100
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,a[N],tmp[N],k;
ll ji;
void gb(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>,cnt=l,h1=l,h2=mid+;
gb(l,mid);
gb(mid+,r);
while(h1<=mid&&h2<=r)
{
while(a[h1]>a[h2])
{
tmp[cnt++]=a[h2];
h2++;
ji+=mid-h1+;
if(h2>r) break;
}
tmp[cnt++]=a[h1];
h1++;
}
for(int i=h1;i<=mid;i++) tmp[cnt++]=a[i];
for(int i=h2;i<=r;i++) tmp[cnt++]=a[i];
for(int i=l;i<=r;i++) a[i]=tmp[i];
}
struct qaz{int x,p;}tp[N];
bool cmp(qaz q,qaz z){if(q.x==z.x)return q.p<z.p;return q.x<z.x;}
int main()
{
n=read();
for(int i=;i<=n;i++){tp[i].x=read();tp[i].p=i;}
sort(tp+,tp+n+,cmp);
for(int i=;i<=n;i++) a[tp[i].p]=i;
k=read();
if(k&)
{
for(int i=;i<=n;i++){tp[i].x=a[i];tp[i].p=i;}
sort(tp+,tp+n+,cmp);
for(int i=;i<=n;i++) a[i]=tp[i].p;
}
gb(,n);
printf("%lld\n",ji);
}
bzoj 4769: 超级贞鱼 -- 归并排序的更多相关文章
- BZOJ 4769: 超级贞鱼 逆序对 + 归并排序
手画几下序列的变换后发现逆序对数是恒定的,故只需对第 $0$ 年求逆序对即可. 树状数组会 $TLE$ 的很惨,需要用到归并排序来求逆序对. 其实就是省掉了一个离散化的时间,估计能比树状数组快一半的时 ...
- 【BZOJ4769】超级贞鱼 归并排序求逆序对
[BZOJ4769]超级贞鱼 Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的左脚和右脚上各有一个数.有一天,K只贞鱼兴致来潮,排成一列,从左到右第i ...
- ROJ 1166 超级贞鱼
1166: 超级贞鱼 Time Limit: 1 Sec Memory Limit: 128 MB [Submit][Status] 传送门 Description 马达加斯加贞鱼是一种神奇的双脚贞 ...
- BZOJ5311,CF321E 贞鱼
题意 Problem 5311. -- 贞鱼 5311: 贞鱼 Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 677 Solved: 150[Subm ...
- BZOJ_5311_贞鱼_决策单调性+带权二分
BZOJ_5311_贞鱼_决策单调性+带权二分 Description 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半. 这不?他们遇到了大麻烦! n只贞鱼到陆地上乘车,现在有k辆汽 ...
- 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼
目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...
- 【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)
[BZOJ5311/CF321E]贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性) 题面 BZOJ CF 洛谷 辣鸡BZOJ卡常数!!!!!! 辣鸡BZOJ卡常数!!!!!! ...
- 贞鱼传教&&贞鱼传教(数据加强版)
http://acm.buaa.edu.cn/problem/1381/ 贞鱼传教[问题描述] 新的一年到来了,贞鱼哥决定到世界各地传授“贞教”,他想让“贞教”在2016年成为世界第四大宗教.说干就干 ...
- CF321E Ciel and Gondolas & BZOJ 5311 贞鱼
一眼可以看出$O(kn^{2})$的$dp$方程,然后就不会了呜呜呜. 设$f_{i, j}$表示已经选到了第$i + 1$个数并且选了$j$段的最小代价,那么 $f_{i, j} = f_{p, j ...
随机推荐
- favico.js笔记
1. favicon.js是什么 一个js库可以使用徽标.图像.视频等来设置网页的favicon,即网页标题栏上的小图标. 2. 如何使用 2.1 使用徽标 basic demo: <!DOCT ...
- 原 jQuery中document的ready和load事件的区别?
概述: 大家在工作中用jQuery的时候一定会在使用之前这样: 1 2 3 4 5 6 7 8 //document ready $(document).ready(function(){ ...
- linux 查看内存和cpu占用比较多的进程
1.可以使用一下命令查使用内存最多的10个进程 ps -aux | sort -k4nr | head -n 102. 可以使用一下命令查使用CPU最多的10个进程 ps ...
- flask插件系列之flask_cors跨域请求
前后端分离在开发调试阶段本地的flask测试服务器需要允许跨域访问,简单解决办法有二: 使用flask_cors包 安装 pip install flask_cors 初始化的时候加载配置,这样就可以 ...
- 轻量级运维工具-pssh,pscp,prsync,pslurp,pnuke
批量执行,并行传输,远程killall #yum安装 yum install pssh -y #yun安装后pscp改名为pscp.pssh #源码编译 wget https://pypi.pytho ...
- Windows 和Linux 误删除后的恢复
ext文件系统上删除文件,可以恢复:extundelete; windows 恢复删除文件: final data v2.0汉化版 和 easyrecovery
- 2018-2019-2 网络对抗技术 20165301 Exp6 信息搜集与漏洞扫描
2018-2019-2 网络对抗技术 20165301 Exp6 信息搜集与漏洞扫描 1.实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 2.实践内容 (1)各种搜索技巧的应用 (2)DNS ...
- TeX Live & TeXstudio 安装手记
数据库课上又看到了那位用 beamer 做 slides 的师兄,想到自己一拖再拖的LaTeX入门,决定赶快动手装个环境再说~在经过一番搜索和研究之后决定先在 windows 底下试用,选择 TeX ...
- Robot Framework + Selenium2Lib
Robot Framework + Selenium2Lib 最近一段时间,公司在推行自动化测试流程,本人有幸参与了自定义通用控件的关键字封装和脚本辅助编写.数据驱动管理.测试用例执行管理等一系列工具 ...
- 将 sublime test3 添加到鼠标右键的方法
将 sublime test3 添加到鼠标右键的方法 将 sublime_addright.inf 文件放到 sublime text 安装目录进行安装即可. 文件名:sublime_addright ...