2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
Description
FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。
Input
* 第1行: 输入1个整数:N * 第2..N+1行: 第i+1行为1个整数:A_i
Output
* 第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费
Sample Input
1
3
2
4
5
3
9
Sample Output
HINT
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。
额……考场上想了好久想到一个貌似不是很严密的结论(后来证明是正确的):把高度进行修改时,一定是把它修改成原数组中的数字是最优的。因为无论是将数字加减多少,总是当它和旁边的数字一样大是最优的。因为这样能刚好满足单调性(两数相等)并且改变的数值最小。有可能前面修改的数字在后面出现要变动的情况,所以它有可能取到原数组中的任何一个数字。然后预处理排序一下得到有序的数组b[]。于是可以写出dp方程:f[i][j]表示前i个数、末尾的数改成了第j大的数的最小代价,则f[i][j]=min(f[i-1][k])+abs(a[i]-b[j]),1<=k<=j。但是这样是n^3的,所以还要加上一个优化:我们计算min(f[i-1][k])是O(n)的,但是这个是上一步的状态,所以可以在上一步直接保存min(f[i-1][k]),用类似前缀和的方法。最后不能忘了把b[]颠倒一下求下降的
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define mod 1000007
#define inf 0x7fffffff
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
int a[5001],s[5001];
int f[2001][2001];
int sav[2001][2001];
int from[2001];
int head[mod];
struct node{
int v,next;
}hashing[100000];
int cnt,len,ans=2147483647;
inline void ins(int u,int w)
{
hashing[++cnt].v=w;
hashing[cnt].next=head[u];
head[u]=cnt;
}
int main()
{
int n=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
int now=a[i]%mod;bool mark=0;
for (int j=head[now];j;j=hashing[j].next)
{
if(hashing[j].v==now) {mark=1;break;}
}
if(mark) continue;
ins(now,a[i]);
s[++len]=a[i];
}
sort(s+1,s+len+1);
for(int i=1;i<=n;i++)
{
sav[i][0]=2147483647;
for (int j=1;j<=len;j++)
{
f[i][j]=2147483647;
int add=abs(a[i]-s[j]);
f[i][j]=sav[i-1][j]+add;
sav[i][j]=min(sav[i][j-1],f[i][j]);
}
}
for (int i=1;i<=len;i++)
ans=min(f[n][i],ans); int rev[len+1];
for (int i=1;i<=len;i++)rev[i]=s[len-i+1];
for (int i=1;i<=len;i++)s[i]=rev[i];
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
{
sav[i][0]=2147483647;
for (int j=1;j<=len;j++)
{
f[i][j]=2147483647;
int add=abs(a[i]-s[j]);
f[i][j]=sav[i-1][j]+add;
sav[i][j]=min(sav[i][j-1],f[i][j]);
}
}
for (int i=1;i<=len;i++)
ans=min(f[n][i],ans); printf("%d",ans);
}
2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整的更多相关文章
- 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整
贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...
- [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)
传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...
- BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整
n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少yy一下可得最后改成的数值肯定是原数组数值中的某一个感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才 ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )
最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...
- 1592: [Usaco2008 Feb]Making the Grade 路面修整
1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 428 Solv ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
- 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态
我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...
随机推荐
- 为什么p标签不能嵌套div??
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- 对C++默认构造函数的理解
在文章开始之前,首先指出对于c++新手的两个常见的误解: 一.任何class如果没有定义default constructor,就会被合成出一个来. 二.编译器合成出来的default constru ...
- [置顶] SQL注入问题
我们做系统,有没有想过,自己的容量很大的一个数据库就被很轻易的进入,并删除,是不是很恐怖的一件事.这就是sql注入. 一.SQL注入的概念 SQL注入攻击指的是通过构建特殊的输入作为参 ...
- [OGRE]看备注学编程(02):打地鼠01-布置场地九只地鼠
项目下载地址:http://download.csdn.net/detail/wxg694175346/6340347 头文件ShrewMouseApplication.h: #ifndef __Sh ...
- USB HID Report Descriptor 报告描述符详解
Report descriptors are composed of pieces of information. Each piece of information is called an Ite ...
- canvas-画蜗牛
<!doctype html><html lang="en"> <head> <meta charset="UTF-8" ...
- <httpProtocol/>配置http协议头
Web.Config中的位置 <configuration> <system.webServer> <httpProtocol> <!--http协议内容-- ...
- IE6不能用class命名!IE6不能用class命名!IE6不能用class命名! 重要的事情说3遍
IE6不能用class命名!IE6不能用class命名!IE6不能用class命名! 重要的事情说3遍
- 学习Android MediaPlayer
Android Media Playback 原文 The Android multimedia framework includes support for playing variety of c ...
- Android-应用的本地化及知识拓展之配置修饰符
步骤很简单,只需要两步: 1.创建带有目标语言的配置修饰符的资源子目录 2.将可选资源放入该目录下,android系统会自动处理后续工作 在这里我们需要讲解一下配置修饰符. 中文的配置修饰符:-zh, ...