NOI2011真题:兔兔与蛋蛋游戏


题目描述

这些天,兔兔和蛋蛋喜欢上了一种新的棋类游戏。

这个游戏是在一个 n行 m 列的棋盘上进行的。游戏开始之前,棋盘上有一个格子是空的,其它的格子中都放置了一枚棋子,棋子或者是黑色,或者是白色。

每一局游戏总是兔兔先操作,之后双方轮流操作,具体操作为:

·兔兔每次操作时,选择一枚与空格相邻的白色棋子,将它移进空格。

·蛋蛋每次操作时,选择一枚与空格相邻的黑色棋子,将它移进空格。

第一个不能按照规则操作的人输掉游戏。为了描述方便,下面将操作“将第x行第y列中的棋子移进空格中”记为 M(x,y)M(x,y)。

例如下面是三个游戏的例子。



最近兔兔总是输掉游戏,而且蛋蛋格外嚣张,于是兔兔想请她的好朋友——你——来帮助她。她带来了一局输给蛋蛋的游戏的实录,请你指出这一局游戏中所有她“犯错误”的地方。

注意:

·两个格子相邻当且仅当它们有一条公共边。

·兔兔的操作是“犯错误”的,当且仅当,在这次操作前兔兔有必胜策略,而这次操作后蛋蛋有必胜策略。

输入格式

输入的第一行包含两个正整数 n,m。

接下来 n 行描述初始棋盘。其中第 i 行包含 m个字符,每个字符都是大写英文字母 X、大写英文字母 O 或点号 . 之一,分别表示对应的棋盘格中有黑色棋子、有白色棋子和没有棋子。其中点号 . 恰好出现一次。

接下来一行包含一个整数 k(1≤k≤1000) ,表示兔兔和蛋蛋各进行了 k 次操作。

接下来 2k 行描述一局游戏的过程。其中第 2i – 1 行是兔兔的第 i 次操作(编号为 i 的操作) ,第 2i 行是蛋蛋的第 i 次操作。每个操作使用两个整数 x,y 来描述,表示将第 x 行第 y列中的棋子移进空格中。

输入保证整个棋盘中只有一个格子没有棋子, 游戏过程中兔兔和蛋蛋的每个操作都是合法的,且最后蛋蛋获胜。

输出格式

输出文件的第一行包含一个整数 r,表示兔兔犯错误的总次数。

接下来 r行按递增的顺序给出兔兔“犯错误”的操作编号。其中第 i 行包含一个整数ai表示兔兔第 i 个犯错误的操作是他在游戏中的第 ai次操作。

输入样例:

1 6

XO.OXO

1

1 2

1 1

输出样例:

1

1

说明提示:

解法:

知识:二分图,博弈论,深度优先搜索

先审清楚题意。A 一步走错的判定:A 走这步之前,A先手采用最优策略必胜;A 走这步之后,B先手采用最优策略必胜。

判断的过程:强制当前点不选,如果它的匹配点仍然能找到新的匹配点,说明有一种最大匹配不包含它,自然它就不是 一定 在最大匹配中。

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN=41,MAXS=1601,MAXK=1001;
int n,m,dx[]={0,0,1,-1},dy[]={1,-1,0,0};
int tar[MAXS];
bool vis[MAXS],win[MAXK];
bool bel[MAXN][MAXN],col[MAXN][MAXN],del[MAXS];
vector <int> edge[MAXS],src;
inline int id(int x,int y) {
if(x<1||x>n||y<1||y>m||bel[x][y]!=col[x][y]) return -1;
return (x-1)*m+y;
}
inline bool match(int p) {
if(del[p]) return false;
for(int x:edge[p]) {
if(vis[x]||del[x]) continue;
vis[x]=true;
if(tar[x]==-1||match(tar[x])) {
tar[x]=p;
return true;
}
}
return false;
}
inline int MM() {
int ret=0;
memset(tar,-1,sizeof(tar));
for(int x:src) {
memset(vis,false,sizeof(vis));
if(match(x)) ++ret;
}
return ret;
}
signed main() {
int kx,ky;
cin>>n>>m;
for(int i=1;i<=n;++i) {
for(int j=1;j<=m;++j) {
char ch;
cin>>ch;
if(ch=='.') kx=i,ky=j,bel[i][j]=true;
else bel[i][j]=(ch=='X');
}
}
for(int i=1;i<=n;++i) for(int j=1;j<=m;++j) col[i][j]=((i+j)%2==(kx+ky)%2);
for(int i=1;i<=n;++i) {
for(int j=1;j<=m;++j) {
if(bel[i][j]&&col[i][j]) {
src.push_back(id(i,j));
for(int k:{0,1,2,3}) {
int x=i+dx[k],y=j+dy[k];
if(id(x,y)!=-1) {
edge[id(i,j)].push_back(id(x,y));
}
}
}
}
}
int stdv=MM(),k;
del[id(kx,ky)]=true;
int tmpv=MM();
win[1]=tmpv!=stdv;
stdv=tmpv;
scanf("%d",&k);
vector <int> ans;
for(int i=1;i<=k;++i) {
int tx,ty;
scanf("%d%d",&tx,&ty);
del[id(tx,ty)]=true;
tmpv=MM();
win[i*2]=tmpv!=stdv;
stdv=tmpv;
if(win[i*2]&&win[i*2-1]) ans.push_back(i);
scanf("%d%d",&tx,&ty);
del[id(tx,ty)]=true;
tmpv=MM();
win[i*2+1]=tmpv!=stdv;
stdv=tmpv;
}
printf("%d\n",(int)ans.size());
for(int p:ans) printf("%d\n",p);
return 0;
}

NOI2011真题:兔兔与蛋蛋游戏的更多相关文章

  1. NOI2011 兔兔与蛋蛋游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2437 这道题真是极好的. 75分做法: 搜索. 出题人真的挺良心的,前15个数据点的范围都很小,可以 ...

  2. 【BZOJ 2437】 2437: [Noi2011]兔兔与蛋蛋 (博弈+二分图匹配**)

    未经博主同意不得转载 2437: [Noi2011]兔兔与蛋蛋 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 442 Des ...

  3. 2437: [Noi2011]兔兔与蛋蛋 - BZOJ

    Description Input 输入的第一行包含两个正整数 n.m.接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母" ...

  4. 【BZOJ2437】【NOI2011】兔兔与蛋蛋(博弈论,二分图匹配)

    [BZOJ2437][NOI2011]兔兔与蛋蛋(博弈论,二分图匹配) 题面 BZOJ 题解 考虑一下暴力吧. 对于每个状态,无非就是要考虑它是否是必胜状态 这个直接用\(dfs\)爆搜即可. 这样子 ...

  5. 【bzoj2437】[Noi2011]兔兔与蛋蛋 二分图最大匹配+博弈论

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  6. bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势

    noi2011 兔兔与蛋蛋 题目大意 直接看原题吧 就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格 兔兔先手,蛋蛋后手 兔兔要把与空格相邻的其中一个白棋移到空格里 蛋蛋要把与空格相邻的其 ...

  7. 博弈论(二分图匹配):NOI 2011 兔兔与蛋蛋游戏

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  8. 第三届蓝桥杯 c/c++真题

    第三届蓝桥杯真题 c/c++ 以下题目我自己也并不是所有的题目都是一次性就能做对或是有结题思路的.有些题目也是经过查证网上相关的资料或是参考了别人的代码和解题思路才做出来的.总的来看,这份题目考了很多 ...

  9. 蓝桥杯java历年真题及答案整理1~20.md

    蓝桥杯java历年真题及答案整理(闭关一个月,呕心沥血整理出来的) 1 算法是这样的,如果给定N个不同字符,将这N个字符全排列,最终的结果将会是N!种.如:给定 A.B.C三个不同的字符,则结果为:A ...

  10. Noip前的大抱佛脚----Noip真题复习

    Noip前的大抱佛脚----Noip真题复习 Tags: Noip前的大抱佛脚 Noip2010 题目不难,但是三个半小时的话要写四道题还是需要码力,不过按照现在的实力应该不出意外可以AK的. 机器翻 ...

随机推荐

  1. Mysql 安全加固经验总结

    本文为博主原创,转载请注明出处: 目录 1.内网部署Mysql 2. 使用独立用户运行msyql 3.为不同业务创建不同的用户,并设置不同的密钥 4.指定mysql可访问用户ip和权限 5. 防sql ...

  2. 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

    摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...

  3. 深度剖析Istio共享代理新模式Ambient Mesh

    摘要:今年9月份,Istio社区宣布Ambient Mesh开源,由此引发国内外众多开发者的热烈讨论. 本文分享自华为云社区<深度剖析!Istio共享代理新模式Ambient Mesh>, ...

  4. ProxySQL监控后端节点

    ProxySQL通过Monitor模块监控后端MySQL Server的read_only值来自动调整节点所属的组.所以,在配置读.写组之前,必须先配置好监控. 首先看下Monitor库中的表: ad ...

  5. Traefik知识点

    Traefik 的各种 Providers Traefik 中的配置发现是通过下面的一些 providers 来实现的. providers 是现有的一些基础架构组件,可以是编排工具,容器引擎,云提供 ...

  6. 在客户端电脑使用 kubectl 远程管理 Kubernetes

    日常工作中,可能需要在自己的笔记本电脑上执行 kubectl 命令以管理远程 Linux 服务器上的 Kubernetes 集群.通过调用 kubernetes API 来实现对 Kubernetes ...

  7. esp-idf 安装(Windows )

    esp32的开发有两种环境,分别是 Arduino 和 esp32-idf. Arduino 是在 esp32-idf 基础上进行封装的,虽然使用起来比较方便,但是能自由更改的就变少了,适合新手使用. ...

  8. Python实现给图片加水印功能

    前言 最近忙得连轴转,很久没更新博客了,代码倒是没啥写,积累了好些东西,接下来一有时间就来更新吧~ 本文记录使用Python实现给图片添加水印的功能实现过程 先看效果 把公众号的封面作为素材 原图是这 ...

  9. 在mybatis中#{}和${}的区别

    文章目录 1.第一个#{} 2.第二个${} 3.区别 1.第一个#{} 解释: 使用#{}格式的语法在mybatis中使用preparement语句来安全的设置值 PreparedStatement ...

  10. SQL--存储过程的使用

    存储过程的概念 存储过程类似一个函数,可以执行一条或者多条SQL语句,可带参数,可返回值 为了简化操作,方便更改和扩展,将一个事件的处理封装在一个单元中供使用. 创建存储过程 --创建存储过程(不带参 ...