Prob.

给定 \(m\) 个相同球,\(n\) 个不同的盒子。

求在这 \(n\) 个盒子中放不超过 \(m\) 个球的方案数,并对 \(p\) 取模。

其中 \(1 \leq n, m \leq 10^9, 1 < p < 10^6\),且 \(p\) 为质数。


Sol.

考虑先大力写出原题对应的组合数的柿子。

那就先来看一个经典模型:求 \(x\) 个不同盒子中放 \(y\) 个球允许盒子空着的方案数。

我们可以运用插板法。总共 \(y - 1\) 个空位,插入 \(x - 1\) 块板,这是不允许空着的方案。

我们可以尝试再给它额外分配 \(x\) 个空位,只要插到了这些空位里,就相当于当前分出的盒子取空。故该模型的答案即为 \(\dbinom {x + y - 1} {x - 1}\)。

不难发现原题就是在这个模型上又套了一个求和,即 \(x\) 固定但 \(y\) 不定。那么原题的答案即为 \({\large \sum \limits_ {i = 0} ^{m}} \dbinom {i + n - 1} {n - 1}\)。

恒等变换一下,即 \({\large \sum \limits_ {i = 0} ^{m + n - 1}} \dbinom {i} {n - 1}\)。

再由利用变上项求和公式可得 \({\large \sum \limits_ {i = 0} ^{m + n - 1}} \dbinom {i} {n - 1} = \dbinom {m + n} {n}\)。

现在我们就将其化为了简洁的一个组合数的形式,瓶颈在于 \(m, n\) 过大。

关于大数组合数的取模不难想到 Lucas ((。


Code.

#include <cstdio>

typedef long long LL;
int Abs(int x) { return x < 0 ? -x : x; }
int Max(int x, int y) { return x > y ? x : y; }
int Min(int x, int y) { return x < y ? x : y; } int read() {
int x = 0, k = 1;
char s = getchar();
while(s < '0' || s > '9') {
if(s == '-')
k = -1;
s = getchar();
}
while('0' <= s && s <= '9') {
x = (x << 3) + (x << 1) + (s ^ 48);
s = getchar();
}
return x * k;
} void write(int x) {
if(x < 0) {
x = -x;
putchar('-');
}
if(x > 9)
write(x / 10);
putchar(x % 10 + '0');
} void print(int x, char s) {
write(x);
putchar(s);
} const int MAXN = 1e5 + 5; int fac[MAXN], inv[MAXN], mod; int Quick_Pow(int a, int b) {
int res = 1;
while(b) {
if(b & 1)
res = (LL)res * a % mod;
a = (LL)a * a % mod;
b >>= 1;
}
return res;
} int C(int n, int m) {
int res = 1;
for(int i = n - m + 1; i <= n; i++)
res = (LL)res * i % mod;
int down = 1;
for(int i = 2; i <= m; i++)
down = (LL)down * i % mod;
return (LL)res * Quick_Pow(down, mod - 2) % mod;
} int Lucas(int n, int m) {
if(m < mod)
return C(n, m);
return (LL)Lucas(n / mod, m / mod) * C(n % mod, m % mod) % mod;
} int main() {
int t = read();
while(t--) {
int n = read(), m = read();
mod = read();
print(Lucas(m + n, n), '\n');
}
return 0;
}

Solution -「Hdu3037」Saving Beans的更多相关文章

  1. Solution -「构造」专练

    记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数 ...

  2. Solution -「原创」Destiny

    题目背景 题目背景与题目描述无关.签到愉快. 「冷」 他半靠在床沿,一缕感伤在透亮的眼眸间荡漾. 冷见惆怅而四散逃去.经历嘈杂喧嚣,感官早已麻木.冷又见空洞而乘隙而入.从里向外,这不是感官的范畴. 他 ...

  3. Solution -「GLR-R2」教材运送

    \(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点,有点权和边权的树.设当前位置 \(s\)(初始时 \(s=1\)),每次在 \(n\) 个结点内 ...

  4. Solution -「WF2011」「BZOJ #3963」MachineWorks

    \(\mathcal{Description}\)   Link.   给定你初始拥有的钱数 \(C\) 以及 \(N\) 台机器的属性,第 \(i\) 台有属性 \((d_i,p_i,r_i,g_i ...

  5. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  6. Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡

    \(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...

  7. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  8. Solution -「ZJOI2012」「洛谷 P2597」灾难

    \(\mathcal{Description}\)   link.   给定一个捕食网络,对于每个物种,求其灭绝后有多少消费者失去所有食物来源.(一些名词与生物学的定义相同 w.)   原图结点数 \ ...

  9. Solution -「JSOI2008」「洛谷 P4208」最小生成树计数

    \(\mathcal{Description}\)   link.   给定带权简单无向图,求其最小生成树个数.   顶点数 \(n\le10^2\),边数 \(m\le10^3\),相同边权的边数不 ...

随机推荐

  1. linux项目部署(非前后端分离crm)

    参考博客 参考博客2---部署过程 导论:看参考博客1 WSGI是Web服务器网关接口.它是一个规范,描述了Web服务器如何与Web应用程序通信,以及Web应用程序如何链接在一起以处理一个请求,(接收 ...

  2. linux篇-linux数据库mysql的安装

    1数据库文件放到opt下面 2赋予权限775 3运行脚本 4运行成功 5数据库操作 密码修改并刷新 权限修改,允许外部设备访问 6工具连接 7附录 1.显示当前数据库服务器中的数据库列表: mysql ...

  3. 使用虚拟机在3台centos7系统安装docker和k8s集群

    一.安装docker 环境:准备3台centos7系统,都安装上docker环境,具体安装步骤和流程如下 参考: https://docs.docker.com/install/linux/docke ...

  4. Python数据分析--Numpy常用函数介绍(5)--Numpy中的相关性函数

    摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票 ...

  5. Random方法中的nextInt(int arg0)方法讲解

    nextInt方法会生成一个随机的在5以内的数,负载均衡随机策略底层用的就是这个方法: Random rand = new Random(); int index = rand.nextInt(5); ...

  6. script标签crossorigin属性及同源策略和跨域方法

    首先介绍(同源策略) 同源策略是浏览器最核心且基本的安全约定,要求协议.域名.端口都相同为同源,如果非同源时请求数据浏览器会在控制台抛出跨域异常错误,同源策略是浏览器的行为,即使客户端请求发送了,服务 ...

  7. 【2022-06-16】Pycharm的下载与安装使用

    一.Pycharm软件简介 产品简介 PyCharm是一种Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使用Pyt ...

  8. TypeScript(5)类、继承、多态

    前言 对于传统的 JavaScript 程序我们会使用函数和基于原型的继承来创建可重用的组件,但对于熟悉使用面向对象方式的程序员使用这些语法就有些棘手,因为他们用的是基于类的继承并且对象是由类构建出来 ...

  9. SAP BPC 开发日记

    1.获取维度模型的方法1 DATA:i_appset_id TYPE uj_appset_id,     i_appl_id   TYPE uj_appl_id.i_appset_id = 'SINO ...

  10. 拒绝蛮力,高效查看Linux日志文件!

    原创:扣钉日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处. 简介 日常分析问题时,会频繁地查看分析日志,但如果蛮力去查看日志,耗时费力还不一定有效果,因此我总结了在Linux常用的 ...