P1219 [USACO1.5]八皇后 Checker Challenge
好长时间没登博客园了,今天想起了账号密码,遂发一篇题解
最近因为复赛正在复健搜索,所以做了这道题
这道题说难并不是很难,但是在于这个题需要找到两个规律
以下是原题
[USACO1.5]八皇后 Checker Challenge
题目描述
一个如下的 6 * 6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 3 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是 n * n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
样例 #1
样例输入 #1
6
样例输出 #1
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
提示
【数据范围】
对于 100% 的数据,6<=n<=13
题目翻译来自NOCOW。
分析时间
我最初的1.0做法是dfs的参数枚举行,for枚举列
然后一输出,妙哉!
后来运行以后,发现输出了几万种可能。。。
怎么回事呢?
我们注意这样的一句不起眼的话
每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
搜嘎,原来是这里没看见啊,意气风发の我翻开编译器,傻眼了:
我们应该怎样去判断到底是哪一行对角线呢?该怎么命名有规律呢?
我打开了画图,仔细的把样例画了出来

(哦,我这天才的审美)
研究了一下,发现左对角线(往左撇)和右对角线(往右撇)不能存放在一个数组里,需要用两个
于是用 lx[] 和 rx[] 来表示
聪明的人已经发现了规律
左对角线行列的和 -1 为 1~n*2-1 的编号
右对角线行 - 列 +n 为 1~n*2-1 的编号
注意:递归千万不要忘了回溯的时候恢复现场!!!
AC代码
#include<iostream>
#include<queue>
using namespace std;
int n,tot,cnt;
int a[15];
int q[15];
int lx[30];
int rx[30];
int l,r;
void dfs(int t){
if(t>n){
cnt++;//计数
if(cnt<=3){
for(int i=1;i<=n;i++) cout<<q[i]<<" ";
cout<<endl;
}//输出
return ;//已经得出一个正解,返回
}
for(int i=1;i<=n;i++){
if(a[i]==0){
if(lx[i+t-1]!=0) continue;
if(rx[t-i+n]!=0) continue;
a[i]=1;
q[++tot]=i;
lx[i+t-1]=1;
rx[t-i+n]=1;
dfs(t+1);
tot--;//回溯
lx[i+t-1]=0;
rx[t-i+n]=0;
a[i]=0;
}
}
}
int main(){
cin>>n;
dfs(1);
cout<<cnt;
}
感谢观看!!!ありがどう!
P1219 [USACO1.5]八皇后 Checker Challenge的更多相关文章
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- 洛谷 P1219 八皇后【经典DFS,温习搜索】
P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...
- 洛谷 P1219八皇后
把全部,在这251秒,赌上! ——<游戏人生zero> 题目:https://www.luogu.org/problem/P1219 八皇后是一道非常非常非常经典的深搜+回溯的题目. 这道 ...
- P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷 p1219 八皇后
刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...
- P1219 八皇后 含优化 1/5
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 【搜索】P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
随机推荐
- 修改Element - plus的样式
把显示再浏览器上的对应css选择器全部写上,并且添加 !important </script> <style lang='scss' scoped> //修改 element ...
- TCP/IP协议(9): UDP(User Datagram Protocol) 协议 —— 最简单的传输层协议
TCP/IP协议(9): UDP(User Datagram Protocol) 协议 -- 最简单的传输层协议 关于用户数据报协议(User Datagram Protocol, UDP)协议 UD ...
- 来了!来了!国内使用chatGPT的方式总结
大家好,最近ChatGPT大火呀. 最近几天OpenAI发布的ChatGPT聊天机器人火出天际了,连着上了各个平台的热搜榜. 这个聊天机器人最大的特点是不仅可以模仿人类说话风格同时回答大量问题,能和你 ...
- playwright 实现高亮、is_visible 等源码修改
一. 前言 高亮是什么? 在ui自动化中可以执行js来让某个页面元素高亮,比如背景颜色.字体颜色.边框颜色等发生改变,以此更加方便执行的时候点了哪一步操作.(如果有不清楚怎么实现的可以转到我的介绍se ...
- select加下拉箭头
<div class="flex"> <label>城市</label> <div class="dealerbo"& ...
- JS获取本周、本月、本季度、本年
---------------------------------------------------------------------------------------------------- ...
- uniapp 返回上一页事件监听
需求 点击订单页---订单详情页----点击修改地址---来到地址列表,修改地址--- 成功以后返回订单详情页,并且更新界面数据 首先在订单详情页 设置事件 监听另一界面触发事件后 就会执行并 ...
- Solidity8.0-01
对应崔棉大师 1-25课程https://www.bilibili.com/video/BV1yS4y1N7yu/?spm_id_from=333.788&vd_source=c81b130b ...
- ucloud 签名算法
# Python version:3.6.5 import hashlib import urllib from urllib.parse import urlparse params = { &qu ...
- 类型提示和python函数中'->'的用法
一.类型提示 在python中,我们定义一个有参函数,调用该函数时需要传入参数,如下所示: # 定义一个简单的函数 def get_full_name(first_name, last_name): ...