\(T1\)递归

给出 \(Thue-Morse\) 序列的定义三

每次 \(0\rightarrow 01\),\(1\rightarrow 10\)

\(0\rightarrow 01 \rightarrow 0110 \rightarrow 01101001\rightarrow...\)

我们现在已知串 \(010010\) 考虑将其划分

\(0\ 10\ 01\ 0\) 或者 \(01\ 00 \ 10\)

显然第二个是不合法的。

我们把第一个补全,为 \(10\ 10\ 01\ 01\)

然后合并一下为 \(1100\) ,我们假设 \(1100\) 出现的位置是 \(i\) 我们 \(010010\) 出现的位置为 \(2i+1\)

然后我们得到递推式 \(f(l,r)=f(\lfloor l/2\rfloor,\lfloor r/2\rfloor)+(l\mod 2)\)

我们只需要暴力求小数据即可

#include<bits/stdc++.h>
using namespace std;
int f[3][8]={{0,1},{5,2,0,1},{0,4,3,1,5,2}};
long long slo(long long l,long long r)
{
if(r-l+1>=4) return 2*slo(l/2,r/2)+(l&1);
long long S=0;
for(long long i=l;i<=r;i++)
{
S|=(__builtin_popcountll(i)&1)<<(i-l);
}
return f[r-l][S];
}
int main()
{
int q;
scanf("%d",&q);
while(q--)
{
long long l,r;
scanf("%lld%lld",&l,&r);
cout<<slo(l,r)<<"\n";
}
}

$T2\ $加边

按照原图跑以 \(1\) 为根的 \(bfs\) 树

\(b>2\times a\)答案是 \(dep\times a\)

否则对于 \(b\) 边进行 \(bfs\) ,类似三元环进行删边,复杂度可以保证在 \(O(m\sqrt m)\)

#define Eternal_Battle ZXK
#include<bits/stdc++.h>
#define int long long
#define MAXN 200005
using namespace std;
#define FastIO
#ifdef FastIO
char buf[1<<21],*p1,*p2;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
template<class T>
T Read()
{
T x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+(ch^'0');
ch=getchar();
}
return x*f;
}
int (*read)()=Read<int>;
#define read Read<int>
vector<int>rd[MAXN],gd[MAXN];
int dis[MAXN],dep[MAXN],n,m,a,b;
void add(int u,int v)
{
rd[u].push_back(v);
gd[u].push_back(v);
}
void bfs()
{
queue<int>q;
memset(dep,-1,sizeof(dep));
q.push(1);
dep[1]=0;
while(q.size())
{
int now=q.front();
q.pop();
for(int i=0;i<rd[now].size();i++)
{
int y=rd[now][i];
if(dep[y]!=-1) continue;
q.push(y); dep[y]=dep[now]+1;
}
}
}
bitset<MAXN>Min;
void bfs_dis()
{
queue<int>q;
memset(dis,-1,sizeof(dis));
q.push(1);
dis[1]=0;
while(q.size())
{
int now=q.front();
q.pop();
// Min.reset();
for(vector<int>::iterator it=rd[now].begin();it!=rd[now].end();)
{
int y=*it;
Min[y]=1;
it++;
}
for(vector<int>::iterator it=rd[now].begin();it!=rd[now].end();)
{
int y=*it;
if(dis[y]!=-1) it=rd[now].erase(it);
else it++;
for(vector<int>::iterator it1=gd[y].begin();it1!=gd[y].end();)
{
int ty=*it1;
if(dis[ty]!=-1)
{
it1=gd[y].erase(it1);
}
else
{
it1++;
if(Min[ty]) continue;
dis[ty]=dis[now]+b;
q.push(ty);
}
}
}
for(int i=0;i<rd[now].size();i++)
{
int y=rd[now][i];
Min[y]=0;
}
}
}
signed main()
{
scanf("%lld%lld%lld%lld",&n,&m,&a,&b);
for(int i=1,u,v;i<=m;i++)
{
u=read();v=read();
add(u,v); add(v,u);
}
bfs();
if(b>=2*a)
{
for(int i=2;i<=n;i++)
{
cout<<dep[i]*a<<"\n";
}
}
else
{
bfs_dis();
for(int i=2;i<=n;i++)
{
if(dep[i]%2==0)
{
cout<<(dep[i]/2)*b<<"\n";
}
else
{
if(dis[i]==-1) cout<<dep[i]/2*b+a<<"\n";
else cout<<min(dep[i]/2*b+a,dis[i])<<"\n";
}
}
}
}

$T3\ $虐场

考虑枚举 \(k\),考虑已知 \(k\) 之后应该怎么求解

设 \(c_i=b_{j+1}-b_{j}-k\)表示空场的和

我们先选定连续 \(n\) 场,向左右移动,可以导致 \(b\) 整体加减 \(1\),\(c\) 不变

首先最大化收益,先考虑选最右侧 \(n\times k\) 场,然后往左移动

设 \(d_i=b_i-a_i\) 我们要 $d_i\leq 0 $,并且 \(\sum |b_i|\) 尽可能小

每次贪心的话,就把目前后缀最大值位置向左平移,最后每个位置移动的位置是后缀的最大值

设后缀最大值 \(suf_i\),答案是 \(\sum (suf_i-b_i)\)

至于移动限制考虑我们只能进行 \(m-k\times n\) 次前缀减,后面的只能进行整体减就好了

发现答案是关于 \(k\) 的凸函数,可以三分找极值点

#define Eternal_Battle ZXK
#include<bits/stdc++.h>
#define int long long
#define MAXN 200010
using namespace std;
int n,m,k,lim,a[MAXN],b[MAXN];
int check(int x)
{
long long nw=0;
for(int i=1;i<=n;i++)
{
b[i]=m*x-x*(x+1)/2*n+i*x-a[i];
nw=max(nw,b[i]);
}
long long an=0,sum=max(nw-m+x*n,0ll);
for(int i=n;i>=1;i--)
{
sum=max(sum,b[i]);
an+=sum-b[i];
}
return an;
}
signed main()
{
scanf("%lld%lld",&n,&m);
k=lim=m/n;
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
int l=1,r=m/n;
while(l<=r)
{
long long mid=(l+r)>>1;
if(mid*(mid-1)/2*n+i*mid<=a[i]) l=mid+1;
else r=mid-1;
}
lim=min(lim,r);
l=1,r=lim;
while(l<=r)
{
long long mid=(l+r)>>1;
if(m*mid-mid*(mid+1)/2*n+i*mid-a[i]-m+mid*n<=0) l=mid+1;
else r=mid-1;
}
k=min(l,k);
}
int ans=check(min(lim,k));
int l=0,r=k-1;
while(r-l>10)
{
int mid=(l+r)>>1;
long long an1=check(mid),an2=check(mid+1);
if(an1<an2) r=mid-1;
else l=mid+2;
}
for(int i=l;i<=r;i++)
{
ans=min(ans,check(i));
}
ans=-ans;
for(int i=1;i<=n;i++)
{
ans+=a[i];
}
cout<<ans<<endl;
}

6.22 NOI 模拟的更多相关文章

  1. 8.22 NOIP 模拟题

      8.22 NOIP 模拟题 编译命令 g++ -o * *.cpp gcc -o * *.c fpc *.pas 编译器版本 g++/gcc fpc 评测环境 位 Linux, .3GHZ CPU ...

  2. 5.30 NOI 模拟

    $5.30\ NOI $模拟 高三大哥最后一次模拟考了,祝他们好运 \(T1\)装箱游戏 显然可以将四种字母之间的空缺当做状态枚举 那么这道题就很显然了 #include<bits/stdc++ ...

  3. 5.23 NOI 模拟

    $5.23\ NOI $模拟 \(T1\)简单的计算几何题 \(zjr:\)我当时没改,那么自己看题解吧 倒是有个简单的随机化方法(能获得\(72pts,\)正确性未知)\(:\) 随机两条切椭圆的平 ...

  4. 5.6 NOI模拟

    \(5.6\ NOI\)模拟 明天就母亲节了,给家里打了个电话(\(lj\ hsez\)断我电话的电,在宿舍打不了,只能用教练手机打了) 其实我不是很能看到自己的\(future,\)甚至看不到高三的 ...

  5. 5.4 NOI模拟

    \(5.4\ NOI\)模拟 \(T1\) 想到分讨,但是暴力输出一下方案之后有很多特别的情况要讨论,就弃了... 假设\(a\)是原序列,\(b\)是我们得到的序列 设\(i\)是最长公共前缀,\( ...

  6. 9.22 NOIP模拟题

    吉林省信息学奥赛 2017 冬令营                                                                                    ...

  7. NOI模拟赛 Day1

    [考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...

  8. 2018.9.22 NOIP模拟赛

    *注意:这套题目应版权方要求,不得公示题面. 从这里开始 Problem A 妹子 Problem B 旅程 Problem C 老大 因为业务水平下滑太严重,去和高一考NOIP模拟,sad... P ...

  9. 2018.08.22 NOIP模拟 string(模拟)

    string [描述] 给定两个字符串 s,t,其中 s 只包含小写字母以及*,t 只包含小写字母. 你可以进行任意多次操作,每次选择 s 中的一个*,将它修改为任意多个(可以是 0 个)它的前一个字 ...

随机推荐

  1. Python数据分析--Numpy常用函数介绍(3)

    摘要:先汇总相关股票价格,然后有选择地对其分类,再计算移动均线.布林线等. 一.汇总数据 汇总整个交易周中从周一到周五的所有数据(包括日期.开盘价.最高价.最低价.收盘价,成交量等),由于我们的数据是 ...

  2. 博弈论(nim游戏,SG函数)

    说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里 ...

  3. 本地创建的jupyter notebook 无法连接本地环境(即不能运行代码)

    参考:https://www.cnblogs.com/damin1909/p/12691147.html 本人所用的python是anaconda下的,由于需求不同,创建了好多个python用于不同的 ...

  4. C++ 炼气期之基本结构语法中的底层逻辑

    1. 前言 从语言的分类角度而言,C++是一种非常特殊的存在.属于高级语言范畴,但又具有低级语言的直接访问硬件的能力,这也成就了C++语言的另类性,因保留有其原始特性,其语法并不象其它高级语言一样易理 ...

  5. 我的 Java 学习&面试网站又又又升级了!

    晚上好,我是 Guide. 距离上次介绍 JavaGuide 新版在线阅读网站已经过去 7 个多月了(相关阅读:官宣!我升级了!!!),这 7 个多月里不论是 JavaGuide 的内容,还是 Jav ...

  6. [自制操作系统] 第05回 CPU的三种模式

    目录 一.前景回顾 二.实模式和保护模式 一.前景回顾 在之前我们说到,loader的作用才是读取加载操作系统内核,那么我们的重心就应该是loader.S文件,其实我们接下来也的确是会往loader. ...

  7. MySQL 千万数据库深分页查询优化,拒绝线上故障!

    文章首发在公众号(龙台的技术笔记),之后同步到博客园和个人网站:xiaomage.info 优化项目代码过程中发现一个千万级数据深分页问题,缘由是这样的 库里有一张耗材 MCS_PROD 表,通过同步 ...

  8. SAP创建XML 文件

    TYPES: BEGIN OF xml_line_type, data(256) TYPE x, END OF xml_line_type, xml_tab_type TYPE TABLE OF xm ...

  9. Docker部署jar包运行

    1.上传jar包到服务器 2.在该目录下创建Dockerfile 文件 vi Dockerfile 3.然后将下面的内容复制到Dockerfile文件中 FROM java:8 MAINTAINER ...

  10. Spring框架系列(10) - Spring AOP实现原理详解之AOP代理的创建

    上文我们介绍了Spring AOP原理解析的切面实现过程(将切面类的所有切面方法根据使用的注解生成对应Advice,并将Advice连同切入点匹配器和切面类等信息一并封装到Advisor).本文在此基 ...