【poj2478】 Farey Sequence
http://poj.org/problem?id=2478 (题目链接)
题意
求分母小于等于n的真分数的个数。
Solution
现在只能做做水题了,唉,思维僵化。
细节
前缀和开LL
代码
// poj2478
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define MOD 10000
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
int phi[maxn],vis[maxn],p[maxn],n;
LL s[maxn]; void calphi() {
phi[1]=1;
for (int i=2;i<=maxn;i++) {
if (!vis[i]) {p[++p[0]]=i;phi[i]=i-1;}
for (int j=1;j<=p[0];j++) {
if (p[j]*i>maxn) break;
vis[p[j]*i]=1;
if (i%p[j]==0) {phi[i*p[j]]=phi[i]*p[j];break;}
else phi[i*p[j]]=phi[i]*phi[p[j]];
}
}
for (int i=2;i<=maxn;i++) s[i]=s[i-1]+phi[i];
}
int main() {
calphi();
while (scanf("%d",&n)!=EOF && n) printf("%lld\n",s[n]);
return 0;
}
【poj2478】 Farey Sequence的更多相关文章
- 【poj2478】Farey Sequence
题意: 求前n项的欧拉函数之和 题解: 预处理出所有欧拉函数 赤裸裸的模版题- - 没什么好说的 代码: #include <cstdio> typedef long long ll; ; ...
- 【POJ2478】Farey Seque
题意: 就是求2~n的所有欧拉函数值的和,这里就用到了快速求欧拉函数的方法.(不能暴力求了,不然必定TLE啊) 说说欧拉筛法,感觉十分机智啊~~ 对于上述代码的几个问题: 1.问:为什么i%prime ...
- 【arc071f】Infinite Sequence(动态规划)
[arc071f]Infinite Sequence(动态规划) 题面 atcoder 洛谷 题解 不难发现如果两个不为\(1\)的数连在一起,那么后面所有数都必须相等. 设\(f[i]\)表示\([ ...
- 【arc074e】RGB Sequence(动态规划)
[arc074e]RGB Sequence(动态规划) 题面 atcoder 洛谷 翻译见洛谷 题解 直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一 ...
- 【BZOJ1367】[Baltic2004]sequence 左偏树
[BZOJ1367][Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sampl ...
- 【BZOJ3043】IncDec Sequence 乱搞
[BZOJ3043]IncDec Sequence Description 给定一个长度为n的数列{a1,a2...an},每次可以选择一个区间[l,r],使这个区间内的数都加一或者都减一.问至少需要 ...
- 【POJ 2478】 Farey Sequence
[题目链接] 点击打开链接 [算法] 不难看出,ans = phi(2) + phi(3) + .... + phi(n-1) + phi(n) 线性筛筛出欧拉函数,预处理前缀和,即可 [代码] #i ...
- 【规律】Farey Sums
[参考博客]: https://blog.csdn.net/meopass/article/details/82952087 Farey Sums 题目描述 Given a positive inte ...
- 【poj 2478】Farey Sequence(数论--欧拉函数 找规律求前缀和)
题意:定义 Fn 序列表示一串 <1 的分数,分数为最简分数,且分母 ≤n .问该序列的个数.(2≤N≤10^6) 解法:先暴力找规律(代码见屏蔽处),发现 Fn 序列的个数就是 Φ(1)~Φ( ...
随机推荐
- Tomcat 5.5启动需要用户名密码的解决方案
我在使用Tomcat的时候碰到这样的问题,然后在csdn里面找到方法,然后保存一份,原帖地址:Tomcat用户名密码,8#原来的tomcat-user.xml是 <?xml version=& ...
- Xcode里-ObjC, -all_load, -force_load
最近在做一个项目的时候,需要使用到一个第三方库,这个库的使用向导里面特别说明,在添加完该库后,需要在Xcode的Build Settings下Other Linker Flags里面加入-ObjC标志 ...
- js profiler
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/?hl=en https://de ...
- C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 用户权限树的实现 -- 权限递归树
业务系统里经常会需要计算类似的树形权限树的业务需求 1:往往会有一些需求,a 对 b 有权限, b对c 有权限, 等等. 2:还需要很直观的看到,整个权限的树形关系,一目了然的那种. 3:程序调用简单 ...
- <实训|第十天>从底层解释一下U盘内存为什么变小的原因附数据恢复的基本原理
[root@localhost~]#序言 我们平时不论是买一个U盘硬盘,或者自己在电脑上创建一个分区,大小总是比我们创建的要小一点,有些人会说,这个正常啊,是因为厂家规定的1M=1000k,真正的是1 ...
- MVC Form异步请求
@using (Ajax.BeginForm("CreateReviewInfo", "Review", new AjaxOptions { HttpMetho ...
- 网站集成QQ登录功能
最近在做一个项目时,客户要求网站能够集成QQ登录的功能,以前没做过这方面的开发,于是去QQ的开放平台官网研究了一下相关资料,经过自己的艰苦探索,终于实现了集成QQ登录的功能,现在把相关的开发经验总结一 ...
- (二十三)原型模式详解(clone方法源码的简单剖析)
作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 原型模式算是JAVA中最简单 ...
- mysql性能优化-慢查询分析、优化索引和配置
一.优化概述 二.查询与索引优化分析 1性能瓶颈定位 Show命令 慢查询日志 explain分析查询 profiling分析查询 2索引及查询优化 三.配置优化 1) max_connec ...
- Java--笔记(1)
1.Swing 是在AWT的基础上构建的一套新的图形界面系统,它提供了AWT 所能够提供的所有功能,并且用纯粹的Java代码对AWT 的功能进行了大幅度的扩充.AWT 是基于本地方法的C/C++程序, ...