http://www.lydsy.com/JudgeOnline/problem.php?id=3675

题意:给一个n个数字的序列,每一次分割的贡献是$sum(left, mid)*sum(mid+1, right)$,其中$left$表示本序列的最左边,$right$同理,$mid$是分割的位置(即在$mid$和$mid+1$中分割)。每次分割序列会变成两半。问分割k次得到的最大贡献和。n<=100000, k<=200

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100005;
ll s[N], d[2][N];
int n, K, q[N], fr, ta;
int main() {
scanf("%d%d", &n, &K);
for(int i=1; i<=n; ++i) scanf("%lld", &s[i]), s[i]+=s[i-1];
ll *now=d[0], *last=d[1];
for(int p=1; p<=K; ++p) {
fr=ta=0; q[ta++]=0;
for(int i=1; i<=n; ++i) {
while(fr!=ta-1 && last[q[fr]]-last[q[fr+1]]<=(s[q[fr]]-s[q[fr+1]])*(s[n]-s[i])) fr++;
int j=q[fr];
now[i]=last[j]+(s[i]-s[j])*(s[n]-s[i]);
while(fr!=ta-1 && (last[i]-last[q[ta-2]])*(s[q[ta-1]]-s[q[ta-2]])>=(last[q[ta-1]]-last[q[ta-2]])*(s[i]-s[q[ta-2]])) --ta;
q[ta++]=i;
}
swap(last, now);
}
ll ans=0;
for(int i=1; i<=n; ++i) ans=max(ans, last[i]);
printf("%lld\n", ans);
return 0;
}

  

听laekov说要分析一下特殊的性质,于是分析了一下。。可以发现,每一个块对答案的贡献是$sum(本块)*sum(剩下的元素)$,最后当然要除以2,因为重复算了两次。但是可以用乱搞一下。。。

考虑dp,设$d(i, j)$表示这个序列在$i$分割了$j$次得到的答案且第$j$次是在$i$分割的。

容易得到:

$d(i, j)=max(d(k, j-1)+sum(k+1, i)*sum(i+1, n))$

大概就是表示得到的块为$(k+1, i)$,然后由于前面算过了对这些值的乘积,所以不用再计算一次(否则答案要除以二= =),于是我们直接乘一下后面的和即可。。

然后另$s(n)=\sum_{i=1}^{n} a[i]$,则

$d(i, j)=max(d(k, j-1)+(s(i)-s(k))*(s(n)-s(i)))$

然后搞搞斜率优化即可= =

(好久没写了然后发现自己维护上凸壳时整个人sb了。。。。队尾居然不是维护凸壳然后交了4发wa居然没发现。。

【BZOJ】3675: [Apio2014]序列分割的更多相关文章

  1. 【斜率DP】BZOJ 3675:[Apio2014]序列分割

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1066  Solved: 427[Submit][Statu ...

  2. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

  3. bzoj 3675 [Apio2014]序列分割(斜率DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3675 [题意] 将n个数的序列分割k次,每次的利益为分割后两部分数值和的积,求最大利益 ...

  4. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    题目链接 BZOJ 3675 首先最后的答案和分割的顺序是无关的, 那么就可以考虑DP了. 设$f[i][j]$为做了$i$次分割,考虑前$j$个数之后的最优答案. 那么$f[i][j] = max( ...

  5. 动态规划(斜率优化):BZOJ 3675 [Apio2014]序列分割

    Description 小H最近迷上了一个分割序列的游戏.在这个游戏里,小H需要将一个长度为N的非负整数序列分割成k+l个非空的子序列.为了得到k+l个子序列, 小H将重复进行七次以下的步骤: 1.小 ...

  6. bzoj 3675: [Apio2014]序列分割

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

  7. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  8. bzoj 3675: [Apio2014]序列分割【斜率优化dp】

    首先看这个得分方式,容易发现就相当于分k段,每段的值和两两乘起来. 这样就很容易列出dp方程:设f[i][j]为到j分成分成i段,转移是 \[ f[i][j]=max { f[k][j]+s[k]*( ...

  9. BZOJ 3675: [Apio2014]序列分割 动态规划 + 斜率优化 + 卡精度

    Code: #include<bits/stdc++.h> #define N 100006 #define M 205 #define ll long long #define setI ...

  10. 3675: [Apio2014]序列分割

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

随机推荐

  1. AR , VR, GVR ...

    虚拟现实与增强现实(眼镜或头盔)的现状与未来-简介http://blog.csdn.net/yanzhanyi/article/details/41982033 Google VR  |  Googl ...

  2. 【JAVA多线程概述】

    一.多线程概述 一个进程中至少有一个线程,每一个线程都有自己运行的内容,这个内容可以称为线程要执行的任务. 不能没一个问题都使用多线程,能使用单线程解决的问题就不要使用多线程解决. 使用多线程的弊端: ...

  3. Fiddler Tips

    使用代理服务器 点击 Tools -> Fiddler Options -> Gateway Fiddler 默认将使用刚打开Fiddler窗口时IE 设置的代理服务器,当然你也可以手动修 ...

  4. C# 创建Windows Service

    当我们需要一个程序长期运行,但是不需要界面显示时可以考虑使用Windows Service来实现.这篇博客将简单介绍一下如何创建一个Windows Service,安装/卸载Windows Servi ...

  5. ASP.NET 5探险(7):使用混合型控制器方便实现单页应用

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:由于在ASP.NET 5中,MVC和WEB API的技术栈合并了,所以开发混合型Con ...

  6. linux常用命令和选项

    (1)比较两个文件. diff filename1 filename2 -y -W number; -y 并列格式输出 -W 并列格式输出时指定的列宽 (2)linux下抓包 tcpdump有三类关键 ...

  7. Android常用控件之GridView与ExpandableListView的用法

    概述 1.GridView:与ListView相比,可以显示多列,xml布局时其属性numColumns可以设置显示的列数. 2.ExpandableListView:与ListView相比,可以让每 ...

  8. @import与link

    本质上,这两种方式都是为了加载CSS文件,但还是存在着细微的差别. 1. 老祖宗的差别.link属于XHTML标签,而@import完全是CSS提供的一种方式. link标签除了可以加载CSS外,还可 ...

  9. Codeforces Round #355 (Div. 2)-B

    B. Vanya and Food Processor 题目链接:http://codeforces.com/contest/677/problem/B Vanya smashes potato in ...

  10. Swift3.0语言教程使用指针创建和初始化字符串

    Swift3.0语言教程使用指针创建和初始化字符串 Swift3.0语言教程使用指针创建和初始化字符串苹果的Swift团队花了不少功夫来支持C的一些基础特性.C语言中为我们提供了指针,Swift也不例 ...