http://www.lydsy.com/JudgeOnline/problem.php?id=3675

题意:给一个n个数字的序列,每一次分割的贡献是$sum(left, mid)*sum(mid+1, right)$,其中$left$表示本序列的最左边,$right$同理,$mid$是分割的位置(即在$mid$和$mid+1$中分割)。每次分割序列会变成两半。问分割k次得到的最大贡献和。n<=100000, k<=200

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100005;
ll s[N], d[2][N];
int n, K, q[N], fr, ta;
int main() {
scanf("%d%d", &n, &K);
for(int i=1; i<=n; ++i) scanf("%lld", &s[i]), s[i]+=s[i-1];
ll *now=d[0], *last=d[1];
for(int p=1; p<=K; ++p) {
fr=ta=0; q[ta++]=0;
for(int i=1; i<=n; ++i) {
while(fr!=ta-1 && last[q[fr]]-last[q[fr+1]]<=(s[q[fr]]-s[q[fr+1]])*(s[n]-s[i])) fr++;
int j=q[fr];
now[i]=last[j]+(s[i]-s[j])*(s[n]-s[i]);
while(fr!=ta-1 && (last[i]-last[q[ta-2]])*(s[q[ta-1]]-s[q[ta-2]])>=(last[q[ta-1]]-last[q[ta-2]])*(s[i]-s[q[ta-2]])) --ta;
q[ta++]=i;
}
swap(last, now);
}
ll ans=0;
for(int i=1; i<=n; ++i) ans=max(ans, last[i]);
printf("%lld\n", ans);
return 0;
}

  

听laekov说要分析一下特殊的性质,于是分析了一下。。可以发现,每一个块对答案的贡献是$sum(本块)*sum(剩下的元素)$,最后当然要除以2,因为重复算了两次。但是可以用乱搞一下。。。

考虑dp,设$d(i, j)$表示这个序列在$i$分割了$j$次得到的答案且第$j$次是在$i$分割的。

容易得到:

$d(i, j)=max(d(k, j-1)+sum(k+1, i)*sum(i+1, n))$

大概就是表示得到的块为$(k+1, i)$,然后由于前面算过了对这些值的乘积,所以不用再计算一次(否则答案要除以二= =),于是我们直接乘一下后面的和即可。。

然后另$s(n)=\sum_{i=1}^{n} a[i]$,则

$d(i, j)=max(d(k, j-1)+(s(i)-s(k))*(s(n)-s(i)))$

然后搞搞斜率优化即可= =

(好久没写了然后发现自己维护上凸壳时整个人sb了。。。。队尾居然不是维护凸壳然后交了4发wa居然没发现。。

【BZOJ】3675: [Apio2014]序列分割的更多相关文章

  1. 【斜率DP】BZOJ 3675:[Apio2014]序列分割

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1066  Solved: 427[Submit][Statu ...

  2. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

  3. bzoj 3675 [Apio2014]序列分割(斜率DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3675 [题意] 将n个数的序列分割k次,每次的利益为分割后两部分数值和的积,求最大利益 ...

  4. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    题目链接 BZOJ 3675 首先最后的答案和分割的顺序是无关的, 那么就可以考虑DP了. 设$f[i][j]$为做了$i$次分割,考虑前$j$个数之后的最优答案. 那么$f[i][j] = max( ...

  5. 动态规划(斜率优化):BZOJ 3675 [Apio2014]序列分割

    Description 小H最近迷上了一个分割序列的游戏.在这个游戏里,小H需要将一个长度为N的非负整数序列分割成k+l个非空的子序列.为了得到k+l个子序列, 小H将重复进行七次以下的步骤: 1.小 ...

  6. bzoj 3675: [Apio2014]序列分割

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

  7. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  8. bzoj 3675: [Apio2014]序列分割【斜率优化dp】

    首先看这个得分方式,容易发现就相当于分k段,每段的值和两两乘起来. 这样就很容易列出dp方程:设f[i][j]为到j分成分成i段,转移是 \[ f[i][j]=max { f[k][j]+s[k]*( ...

  9. BZOJ 3675: [Apio2014]序列分割 动态规划 + 斜率优化 + 卡精度

    Code: #include<bits/stdc++.h> #define N 100006 #define M 205 #define ll long long #define setI ...

  10. 3675: [Apio2014]序列分割

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

随机推荐

  1. spring 集成 log4j 配置

    在web.xml中增加如下代码: <context-param> <param-name>log4jConfigLocation</param-name> < ...

  2. C# 文件读取方法,自己写的例子,保存一下,备用

    /// <summary> /// 将output.config内容传到app.config /// </summary> string ReadString; //两个地址 ...

  3. 总结之HashMap

    前言:在上班途中使用博客园的客户端看了看文章,恰好两天之中看了同一个主题关于HashMap的两篇文章: http://www.cnblogs.com/chenssy/p/3521565.html ht ...

  4. 通过Small Basic把儿子/女儿带入编程的世界

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:今天是儿子3岁的生日,就来介绍一下适合给儿童培养兴趣的编程语言--微软Small Ba ...

  5. 第二十五篇:在SOUI中做事件分发处理

    不同的SOUI控件可以产生不同的事件.SOUI系统中提供了两种事件处理方式:事件订阅 + 事件处理映射表(参见第八篇:SOUI中控件事件的响应) 事件订阅由于直接将事件及事件处理函数连接,不存在事件分 ...

  6. Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA

    E. Cactus   A connected undirected graph is called a vertex cactus, if each vertex of this graph bel ...

  7. bzoj1691[Usaco2007 Dec]挑剔的美食家 平衡树treap

    Description 与很多奶牛一样,Farmer John那群养尊处优的奶牛们对食物越来越挑剔,随便拿堆草就能打发她们午饭的日子自然是一去不返了.现在,Farmer John不得不去牧草专供商那里 ...

  8. HDU 2896 病毒侵袭(AC自动机)

    病毒侵袭 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. AJAX案例二:简单表单验证

    案例:如果用户名输入为张三,那么在失去焦点时后面会显示该用户名已被注册,否则显示可以注册! <%@ page language="java" import="jav ...

  10. 那些Android中的性能优化

    性能优化是一个大的范畴,如果有人问你在Android中如何做性能优化的,也许都不知道从哪开始说起. 首先要明白的是,为什么我们的App需要优化,最显而易见的时刻:用户say,什么狗屎,刷这么久都没反应 ...