Positive-definite matrix
In linear algebra, a symmetric n × n real matrix M is said to be positive definite if zTMz is positive for every non-zero columnvector
z of n real numbers. Here zT denotes thetranspose of
z.
- The real symmetric matrix
-
- is positive definite since for any non-zero column vector z with entriesa,
b and c, we have - This result is a sum of squares, and therefore non-negative; and is zero only ifa =
b = c = 0, that is, when z is zero.
- The real symmetric matrix
-
-
is not positive definite. If z is the vector
, one has
More generally, an n × n Hermitian matrix M is said to be positive definite if
z*Mz is real and positive for all non-zero complex vectors z. Here
z* denotes the conjugate transpose of z.
- 摘自:https://en.wikipedia.org/wiki/Positive_semidefinite_matrix
Positive-definite matrix的更多相关文章
- 正定矩阵(positive definite matrix)
设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵. 正定矩阵在合同变换下可化为标准型, 即对角矩阵. 所有特征值大于零的对称矩阵也是正定矩阵. ...
- a positive definite matrix
https://en.wikipedia.org/wiki/Definite_quadratic_form https://www.math.utah.edu/~zwick/Classes/Fall2 ...
- 【线性代数】6-5:正定矩阵(Positive Definite Matrices)
title: [线性代数]6-5:正定矩阵(Positive Definite Matrices) categories: Mathematic Linear Algebra keywords: Po ...
- 正定矩阵(definite matrix)
1. 基本定义 在线性规划中,一个对称的 n×n 的实值矩阵 M,如果满足对于任意的非零列向量 z,都有 zTMz>0. 更一般地,对于 n×n 的 Hermitian 矩阵(原矩阵=共轭转置, ...
- cholesky分解
接着LU分解继续往下,就会发展出很多相关但是并不完全一样的矩阵分解,最后对于对称正定矩阵,我们则可以给出非常有用的cholesky分解.这些分解的来源就在于矩阵本身存在的特殊的 结构.对于矩阵 ...
- Mahout 系列之----共轭梯度
无预处理共轭梯度 要求解线性方程组 ,稳定双共轭梯度法从初始解 开始按以下步骤迭代: 任意选择向量 使得 ,例如, 对 若 足够精确则退出 预处理共轭梯度 预处理通常被用来加速迭代方法的收敛.要使用预 ...
- 从线性模型(linear model)衍生出的机器学习分类器(classifier)
1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大 ...
- Kalman Filters
|—定位—|—蒙特卡洛方法(定位自身) | |—卡尔曼滤波器(定位其他车辆) |—高斯函数 |—循环两个过程—|—测量(测量更新) | ...
- AI人工智能专业词汇集
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽 ...
- Cholesky分解 平方根法
一种矩阵运算方法,又叫Cholesky分解.所谓平方根法,就是利用对称正定矩阵的三角分解得到的求解对称正定方程组的一种有效方法.它是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解.它要 ...
随机推荐
- 免费的网络扫描器-Advanced IP Scanner
软件会自动检测电脑所在的网段,自动决定扫描范围.(例如电脑IP是192.168.1.101,扫描范围就是192.168.1.*) 官方网站:http://www.advanced-ip-scanner ...
- Hdu 1443 Joseph
Joseph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- ReferenceEquals和 == 和equals()的比较
对于这几点的区别网上经常有各种答案,而且常常会出现答案之间是互相矛盾的.要嘛就是根本含糊的解释不清楚,只是把测试结果扔上来并没有言简意赅的写出他们之间的比较.难道面试的时候考官问你,你也要在纸上写一大 ...
- 微信开发那点事(No.001)
MXS&Vincene ─╄OvЁ &0000024─╄OvЁ MXS&Vincene MXS&Vincene ─╄OvЁ:今天很残酷,明天更残酷,后天很美好, ...
- 什么是REST、RESTful
1.REST 指的是一组架构约束条件和原则.满足这些约束条件和原则的应用程序或设计就是 RESTful. 2.REST 原则是分层系统,这表示组件无法了解它与之交互的中间层以外的组件.通过将系统知识限 ...
- curl_init函数用法
使用PHP的cURL库可以简单和有效地去抓网页.你只需要运行一个脚本,然后分析一下你所抓取的网 页,然后就可以以程序的方式得到你想要的数据了.无论是你想从从一个链接上取部分数据,或是取一个XML文件并 ...
- 为您详细比较三个 CSS 预处理器(框架):Sass、LESS 和 Stylus
CSS 预处理器技术已经非常的成熟,而且也涌现出了越来越多的 CSS 的预处理器框架.本文向你介绍使用最为普遍的三款 CSS 预处理器框架,分别是 Sass.Less CSS.Stylus. 首先我们 ...
- CentOS 6.4下编译安装 gcc-4.8.0(转)
转:http://www.centoscn.com/image-text/install/2014/0807/3454.html 1.首先下载源代码 wget http://ftp.gnu.org/g ...
- Tomcat connector元素常用配置(最大连接数等)
在tomcat的server.xml中有类似: <Connector port=" minSpareTHreads=" URIEncoding="gbk" ...
- aliyun的yum源(国内速度极快)
公网(家里宽带下载速度达到1-3.5M): http://mirrors.aliyun.com/repo/Centos-6.repo 内网(购买的阿里云主机可以访问): http://mirrors. ...


