C Looooops
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 23616   Accepted: 6517

Description

A Compiler Mystery: We are given a C-language style for loop of type

for (variable = A; variable != B; variable += C)

statement;

I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.

Input

The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop.

The input is finished by a line containing four zeros.

Output

The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate.

Sample Input

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

Sample Output

0
2
32766
FOREVER

Source

题意:(a+bx)%(2^k)==c,求x最小值;
思路:解扩展欧几里德;

#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
#define ll long long
#define esp 1e-13
const int N=1e4+,M=1e6+,inf=1e9+,mod=;
void extend_Euclid(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
extend_Euclid(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll gcd(ll a,ll b)
{
if(b==)
return a;
return gcd(b,a%b);
}
ll pow1(ll x)
{
ll sum=;
for(ll i=;i<x;i++)
sum*=;
return sum;
}
int main()
{
ll x,y,i,z,t;
while(~scanf("%lld%lld%lld%lld",&x,&y,&i,&t))
{
if(x==&&y==&&i==&&t==)
break;
ll m=pow1(t);
ll c=((y-x)%m+m)%m;
ll j,k;
if(c%gcd(m,i)==)
{
extend_Euclid(i,m,j,k);
ll ans=j*(c/gcd(m,i));
m=m/gcd(m,i);
printf("%lld\n",(ans%m+m)%m);
}
else
printf("FOREVER\n");
}
return ;
}

poj 2115 C Looooops 扩展欧几里德的更多相关文章

  1. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

  2. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  3. POJ 2115 C Looooops(扩展欧几里得)

    辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...

  4. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  5. poj 2115 C Looooops(扩展gcd)

    题目链接 这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa. 后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b.还 ...

  6. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  7. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  8. POJ2115 C Looooops 扩展欧几里德

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次 ...

  9. poj2115 Looooops 扩展欧几里德的应用

    好开心又做出一道,看样子做数论一定要先看书,认认真真仔仔细细的看一下各种重要的性质 及其用途,然后第一次接触的题目 边想边看别人的怎么做的,这样做出第一道题目后,后面的题目就完全可以自己思考啦 设要+ ...

随机推荐

  1. 《从零开始学Swift》学习笔记(Day 53)——do-try-catch错误处理模式

    原创文章,欢迎转载.转载请注明:关东升的博客 Swift 1.x的错误处理模式存在很多弊端,例如:为了在编程时候省事,给error参数传递一个nil,或者方法调用完成后不去判断error是否为nil, ...

  2. 如何运行Python程序

    注:以下均基于windows下操作,并且安装的是最新的python3.3版本. 安装完python之后,我们可以做两件事情, 1.将安装目录中的Doc目录下的python331.chm使用手册复制到桌 ...

  3. Mybatis Insert 返回主键ID

    <insert id="insert" useGeneratedKeys="true" keyProperty="u_Id" para ...

  4. 学习 NGINX

    At a high level, configuring NGINX Plus as a web server is a matter of defining which URLs it handle ...

  5. iOS CGAffineTransform你了解多少?

    CGAffineTransform介绍 概述 CGAffineTransform是一个用于处理形变的类,其可以改变控件的平移.缩放.旋转等,其坐标系统采用的是二维坐标系,即向右为x轴正方向,向下为y轴 ...

  6. Java基础 - 获取随机数

    使用方法 package com.demo5; import java.util.Random; /* * 使用步骤: * A:导包 * import java.util.Random; * B:创建 ...

  7. Selenium获取input输入框中值的几种方法

    1.selenium 自带的方法 get_attribute('value') driver.find_element_by_name("f[url]").get_attribut ...

  8. 010-spring事务管理

    一.Spring的事务传播行为 事务是从哪里传播到哪里? 是从方法A传播至方法B. Spring事务类型详解: PROPAGATION_REQUIRED--如果当前没有事务,就新建一个事务.如果有,就 ...

  9. Java设计模式之《单例模式》及应用场景(转发:http://www.cnblogs.com/V1haoge/p/6510196.html)

    所谓单例,指的就是单实例,有且仅有一个类实例,这个单例不应该由人来控制,而应该由代码来限制,强制单例. 单例有其独有的使用场景,一般是对于那些业务逻辑上限定不能多例只能单例的情况,例如:类似于计数器之 ...

  10. SaltStack任务计划

    编辑fansik_cron.sls文件: 内容如下: cron_test: cron.present: - name: /bin/touch /tmp/fansik.txt - user: root ...