[51nod]1229 序列求和 V2(数学+拉格朗日差值)
题面
题解
这种颓柿子的题我可能死活做不出来……
首先\(r=0\)……算了不说了,\(r=1\)就是个裸的自然数幂次和直接爱怎么搞怎么搞了,所以以下都假设\(r>1\)
设
\]
我们要求的就是\(s_k\)
因为有
\]
\]
两个柿子减一减
\]
然后来考虑后面这个东西
\sum_{i=2}^nr^i\left((i-1)^k-i^k\right)
&=\sum_{i=2}^nr^i\left(\sum_{j=0}^k{k\choose j}i^j(-1)^{k-j}-i^k\right)\\
&=\sum_{i=2}^nr^i\sum_{j=0}^{k-1}{k\choose j}i^j(-1)^{k-j}\\
&=\sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}\sum_{i=2}^nr^ii^j\\
&=\sum_{j=0}^{k-1}{k\choose j}(-1)^{k-j}\left(s(j)-r\right)\\
\end{aligned}
\]
那么就可以\(O(k^2)\)递推了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=2005,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R ll y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int fac[N],ifac[N],inv[N],Pre[N],suf[N],f[N],s[N];
ll n,r;int k,m;
inline int C(R int n,R int m){return 1ll*fac[n]*ifac[m]%P*ifac[n-m]%P;}
void init(int n=N-1){
inv[0]=inv[1]=ifac[0]=ifac[1]=fac[0]=fac[1]=1;
fp(i,2,n){
fac[i]=mul(fac[i-1],i),
inv[i]=mul(P-P/i,inv[P%i]),
ifac[i]=mul(ifac[i-1],inv[i]);
}
}
int Lagrange(){
n%=P;
fp(i,1,k+2)f[i]=add(f[i-1],ksm(i,k));
if(n<=k+2)return f[n];
m=k+2;
Pre[0]=1;fp(i,1,m)Pre[i]=mul(Pre[i-1],n-i);
suf[m+1]=1;fd(i,m,1)suf[i]=mul(suf[i+1],n-i);
int res=0,ty=(m-1)&1?P-1:1;
fp(i,1,m)res=add(res,1ll*f[i]*ty%P*Pre[i-1]%P*suf[i+1]%P*ifac[m-i]%P*ifac[i-1]%P),ty=P-ty;
return res;
}
int calc(){
if(!r)return 0;
R int p=ksm(r,n+1),q=1,invr=ksm(r-1,P-2),ty;
s[0]=mul(dec(p,r),invr),n%=P;
fp(i,1,k){
q=mul(q,n),s[i]=dec(mul(p,q),r),ty=(i&1)?P-1:1;
fp(j,0,i-1)s[i]=add(s[i],1ll*C(i,j)*ty%P*dec(s[j],r)%P),ty=P-ty;
s[i]=mul(s[i],invr);
}
return s[k];
}
int main(){
// freopen("testdata.in","r",stdin);
init();
int T;scanf("%lld",&T);
while(T--){
scanf("%lld%d%lld\n",&n,&k,&r),r%=P;
printf("%d\n",r==1?Lagrange():calc());
}
return 0;
}
[51nod]1229 序列求和 V2(数学+拉格朗日差值)的更多相关文章
- 51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4 基准时间限制:8 秒 空间限制:131 ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- 51nod 1228 序列求和(伯努利数)
1228 序列求和 题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 T(n) = n^k,S(n) = T(1 ...
- 51nod1229 序列求和 V2 【数学】
题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) ...
- 51nod1229 序列求和 V2
这题...毒瘤吧,可能要写两份代码... 传送门 noteskey 我们考虑这里的复杂度肯定是与 k 相关的,而且平方也是没问题的,那么我们先看看 S(k) 能怎么得到: \[\begin{align ...
- 51Nod 1228 序列求和
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...
- P5437-[XR-2]约定【拉格朗日差值,数学期望】
正题 题目链接:https://www.luogu.com.cn/problem/P5437 题目大意 \(n\)个点的完全图,连接\(i,j\)的边权值为\((i+j)^k\).随机选出一个生成树, ...
- [51nod 1822]序列求和
\(k\leq 200000\) 考虑转化成枚举 \(k\) 的形式 我们错位相减! \[A_k=\sum_{i=1}^N i^K\times R^i \\ RA_k=\sum_{i=2}^{N+1} ...
- 51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )
C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过 ...
随机推荐
- plsql中调试函数 转
1.首先在函数名上右键Test 2.进入调试界面后,界面下方会出现变量列表,在下图中value的栏中填入输入参数后,点击下图左上方带放大镜的绿色三角 3.此时进入调试模式,点击下图中的第一个蓝色方框, ...
- Springboot热部署(热部署原理)和用IDEA开发需要的配置
热部署原理 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>s ...
- 微信小程序中在页面中实现下拉刷新显示提醒语后在消失
最近在做小程序的时候遇见一个问题,就是页面要下拉刷新给客户一个提醒语,查看了小程序的官方文档 这里有个注意点:如果你是一页进行下拉刷新就在那个文件夹的json里面加上"enablePullD ...
- fpga中wire和reg的区别
wire表示直通,即只要输入有变化,输出马上无条件地反映:reg表示一定要有触发,输出才会反映输入.wire表示直通,即只要输入有变化,输出马上无条件地反映:reg表示一定要有触发,输出才会反映输入. ...
- SpringBoot13 利用mybatis-plus自动生成entity、dao、service、controller
1 环境配置 = 2 新建一个新的springboot项目 2.1 选择一些必要的依赖 web jpa mysql <?xml version="1.0" encoding= ...
- ROS 不能安装 Ros Packages
我的linux版本是16.04,安装的是kinetic 1. E: Some index files failed to download. They have been ignored, or ol ...
- Java多线程共享变量控制
1. 可见性 如果一个线程对共享变量值的修改,能够及时的被其他线程看到,叫做共享变量的可见性.如果一个变量同时在多个线程的工作内存中存在副本,那么这个变量就叫共享变量 2. JMM(java内存模型) ...
- Part7-时钟初始化_lesson1
1.概念解析 1.1时钟脉冲信号 1.2时钟脉冲频率 1.3时钟源(提供时钟脉冲信号) a.晶振 b.锁相环PLL 2.时钟体系 2440: 晶振的频率.时钟体系有多少个PLL.这些PLL分别产生了哪 ...
- bootstrap页面效果图
<!DOCTYPE html><html lang="zh-cn"><head><meta charset="utf-8&quo ...
- Eclipse工具
1 ArrayList的常见方法 * a: add(参数) 向集合中添加元素 * b: get(int index) 取出集合中的元素,get方法的参数,写入索引 * c: size() 返回集合的长 ...