#include <WINSOCK2.H>
#include <stdio.h> #define PORT 5150
#define MSGSIZE 1024 #pragma comment(lib, "ws2_32.lib") typedef struct
{
WSAOVERLAPPED overlap;
WSABUF Buffer;
char szMessage[MSGSIZE];
DWORD NumberOfBytesRecvd;
DWORD Flags;
SOCKET sClient;
}PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA; DWORD WINAPI WorkerThread(LPVOID);
void CALLBACK CompletionROUTINE(DWORD, DWORD, LPWSAOVERLAPPED, DWORD); SOCKET g_sNewClientConnection;
BOOL g_bNewConnectionArrived = FALSE; int main()
{
WSADATA wsaData;
SOCKET sListen;
SOCKADDR_IN local, client;
DWORD dwThreadId;
int iaddrSize = sizeof(SOCKADDR_IN); // Initialize Windows Socket library
WSAStartup(0x0202, &wsaData); // Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); // Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN)); // Listen
listen(sListen, ); // Create worker thread
CreateThread(NULL, , WorkerThread, NULL, , &dwThreadId); while (TRUE)
{
// Accept a connection
g_sNewClientConnection = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
g_bNewConnectionArrived = TRUE;
printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
}
} DWORD WINAPI WorkerThread(LPVOID lpParam)
{
LPPER_IO_OPERATION_DATA lpPerIOData = NULL; while (TRUE)
{
if (g_bNewConnectionArrived)
{
// Launch an asynchronous operation for new arrived connection
lpPerIOData = (LPPER_IO_OPERATION_DATA)HeapAlloc(
GetProcessHeap(),
HEAP_ZERO_MEMORY,
sizeof(PER_IO_OPERATION_DATA));
lpPerIOData->Buffer.len = MSGSIZE;
lpPerIOData->Buffer.buf = lpPerIOData->szMessage;
lpPerIOData->sClient = g_sNewClientConnection; WSARecv(lpPerIOData->sClient,
&lpPerIOData->Buffer,
,
&lpPerIOData->NumberOfBytesRecvd,
&lpPerIOData->Flags,
&lpPerIOData->overlap,
CompletionROUTINE); g_bNewConnectionArrived = FALSE;
} SleepEx(, TRUE);                  //这里如果不sleep,根本不会进入完成例程的回调,第一个参数时间可以适当缩小
}
return ;
} void CALLBACK CompletionROUTINE(DWORD dwError,
DWORD cbTransferred,
LPWSAOVERLAPPED lpOverlapped,
DWORD dwFlags)
{
LPPER_IO_OPERATION_DATA lpPerIOData = (LPPER_IO_OPERATION_DATA)lpOverlapped;   if (dwError != || cbTransferred == )
  {
  // Connection was closed by client
  closesocket(lpPerIOData->sClient);
  HeapFree(GetProcessHeap(), , lpPerIOData);
  }
  else
{
lpPerIOData->szMessage[cbTransferred] = '\0';
send(lpPerIOData->sClient, lpPerIOData->szMessage, cbTransferred, ); // Launch another asynchronous operation
memset(&lpPerIOData->overlap, , sizeof(WSAOVERLAPPED));
lpPerIOData->Buffer.len = MSGSIZE;
lpPerIOData->Buffer.buf = lpPerIOData->szMessage; WSARecv(lpPerIOData->sClient,
&lpPerIOData->Buffer,
,
&lpPerIOData->NumberOfBytesRecvd,
&lpPerIOData->Flags,
&lpPerIOData->overlap,
CompletionROUTINE);
}
}

这个模型中有两个函数可以交换着用,那就是WSAWaitForMultipleEvents()和SleepEx()函数,前者需要一个事件驱动,后者则不需要。是不是听起来后者比较厉害,当然不是,简单肯定是拿某种性能换来的,那就是当多client同时发出请求的时候,SleepEx如果等候时间设置成比较大的话,会造成client连接不上的现象。具体可以运行一下示例代码体会一下。

完成例程来实现重叠I/O比用事件通知简单得多。在这个模型中,主线程只用不停的接受连接即可;辅助线程判断有没有新的客户端连接被建立,如果有,就为那个客户端套接字激活一个异步的WSARecv操作,然后调用SleepEx使线程处于一种可警告的等待状态,以使得I/O完成后CompletionROUTINE可以被内核调用。如果辅助线程不调用SleepEx,则内核在完成一次I/O操作后,无法调用完成例程(因为完成例程的运行应该和当初激活WSARecv异步操作的代码在同一个线程之内)。

完成例程内的实现代码比较简单,它取出接收到的数据,然后将数据原封不动的发送给客户端,最后重新激活另一个WSARecv异步操作。注意,在这里用到了“尾随数据”。我们在调用WSARecv的时候,参数lpOverlapped实际上指向一个比它大得多的结构PER_IO_OPERATION_DATA,这个结构除了WSAOVERLAPPED以外,还被我们附加了缓冲区的结构信息,另外还包括客户端套接字等重要的信息。这样,在完成例程中通过参数lpOverlapped拿到的不仅仅是WSAOVERLAPPED结构,还有后边尾随的包含客户端套接字和接收数据缓冲区等重要信息。这样的C语言技巧在我后面介绍完成端口的时候还会使用到。

windows网络模型之重叠IO(完成例程)的使用的更多相关文章

  1. windows网络模型之重叠IO的使用

    大部分内容转载自https://blog.csdn.net/piggyxp/article/details/114883 目录: 1. 重叠模型的优点 2. 重叠模型的基本原理 3. 关于重叠模型的基 ...

  2. 四.Windows I/O模型之重叠IO(overlapped)模型

    1.适用于除Windows CE之外的各种Windows平台.在使用这个模型之前应该确保该系统安装了Winsock2.重叠模型的基本设计原理是使用一个重叠的数据结构,一次投递一个或多个Winsock ...

  3. winSocket编程(九)重叠IO

    重叠模型的优点 重叠模型的基本原理 关于重叠模型的基础知识 重叠模型的实现步骤 多客户端情况的注意事项 一.重叠模型的优点 1.可以运行在支持Winsock2的所有Windows平台 ,而不像完成端口 ...

  4. 重叠IO

    一. 异步IO        说到重叠模型首先还是提一下异步IO比较好,因为从本质上讲,重叠模型也是一种异步IO模型.       我们知道,相对于计算机执行的其他操作而言,设备IO(文件.管道.套接 ...

  5. 重叠io操作

    第一章 一. 重叠模型的优点 1. 可以运行在支持Winsock2的所有Windows平台 ,而不像完成端口只是支持NT系统. 2. 比起阻塞.select.WSAAsyncSelect以及WSAEv ...

  6. windows网络模型

    Windows提供了四种异步IO技术,机制几乎时相同的,区别在于通知结果的方式不同: 1.通过注册的消息函数进行通知 2.通过内核event事件进行通知 3.通过称为完成例程的回调函数进行通知 4.通 ...

  7. Windows内核原理-同步IO与异步IO

    目录 Windows内核原理-同步IO与异步IO 背景 目的 I/O 同步I/O 异步I/O I/O完成通知 总结 参考文档 Windows内核原理-同步IO与异步IO 背景 在前段时间检查异常连接导 ...

  8. 重叠IO 模型

    1. 重叠模型的优点 2. 重叠模型的基本原理 3. 关于重叠模型的基础知识 4. 重叠模型的实现步骤 5. 多客户端情况的注意事项 一.重叠模型的优点   1.可以运行在支持Winsock2的所有W ...

  9. Socket重叠IO

    1.为什么到现在才弄懂这个 不知道这个Socket重叠IO这种模型是不是socket IO完成端口的基础,不过我感觉,学习一下这个再去学习socket IO完成端口是比较有好处的. 这个Scoket重 ...

随机推荐

  1. 剑指offer——面试题7:重建二叉树

    // 面试题7:重建二叉树 // 题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输 // 入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1, // 2, ...

  2. proxyee down源码分析

    proxyee down下载速度不错, 底层使用netty+多线程,最近在看netty网络方面的应用,正好这是个案例 源代码地址 https://github.com/proxyee-down-org ...

  3. Python 中下划线的 5 种含义

    详细请参考这篇文章 单前导下划线:_var 单末尾下划线:var_ 双前导下划线:__var 双前导和末尾下划线:__var__ 单下划线:_

  4. 如何利用工具提高你的 Android 代码质量

    在这篇文章中,我将通过不同的自动化工具如CheckStyle,FindBugs,PMD以及Android Lint来介绍(如何)提高你的安卓代码质量.通过自动化的方式检查你的代码非常有用,尤其当你在一 ...

  5. 三大视频网站Url的处理保存(视频和图片二选一操作)

    前台Js // 视频处理 var textVideoLink=$("input[name='textVideoLink']").val(); // 去除所有有的引号和空格 var ...

  6. 理解 glibc malloc:主流用户态内存分配器实现原理

    https://blog.csdn.net/maokelong95/article/details/51989081 Understanding glibc malloc 修订日志: 2017-03- ...

  7. NSTimer_Block封装定时器的target-action成Block回调

    前言 定时器NSTimer虽然简单易用,但是目标响应机制(target-action)这种方式很容易在代码中出现代码臃肿的情况,特别是在一个文件中有大量的代码,多个定时器的时候不方便调试,因此将NST ...

  8. 几个免费 IP 归属地查询 API

    1.淘宝:同个IP不能连续查询,需要时间间隔 http://ip.taobao.com/service/getIpInfo.php?ip=114.114.114.114 返回结果 { "co ...

  9. bootstrap-table使用记录

    效果如图所示: 1.框架用的flask 目录结构如下: 2.前端代码如下: table-test1.html <!DOCTYPE html> <html> <head&g ...

  10. Js常用的设计模式(1)——单例模式

    <Practical Common Lisp>的作者 Peter Seibel 曾说,如果你需要一种模式,那一定是哪里出了问题.他所说的问题是指因为语言的天生缺陷,不得不去寻求和总结一种通 ...