Dream

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1014    Accepted Submission(s): 200
Special Judge

Problem Description
Freshmen frequently make an error in computing the power of a sum of real numbers, which usually origins from an incorrect equation (m+n)p=mp+np, where m,n,p are real numbers. Let's call it ``Beginner's Dream''.

For instance, (1+4)2=52=25, but 12+42=17≠25. Moreover, 9+16−−−−−√=25−−√=5, which does not equal 3+4=7.

Fortunately, in some cases when p is a prime, the identity

(m+n)p=mp+np

holds true for every pair of non-negative integers m,n which are less than p, with appropriate definitions of addition and multiplication.

You are required to redefine the rules of addition and multiplication so as to make the beginner's dream realized.

Specifically, you need to create your custom addition and multiplication, so that when making calculation with your rules the equation (m+n)p=mp+np is a valid identity for all non-negative integers m,n less than p. Power is defined as

ap={1,ap−1⋅a,p=0p>0

Obviously there exists an extremely simple solution that makes all operation just produce zero. So an extra constraint should be satisfied that there exists an integer q(0<q<p) to make the set {qk|0<k<p,k∈Z} equal to {k|0<k<p,k∈Z}. What's more, the set of non-negative integers less than p ought to be closed under the operation of your definitions.

Hint

Hint for sample input and output:
From the table we get 0+1=1, and thus (0+1)2=12=1⋅1=1. On the other hand, 02=0⋅0=0, 12=1⋅1=1, 02+12=0+1=1.
They are the same.

 
Input
The first line of the input contains an positive integer T(T≤30) indicating the number of test cases.

For every case, there is only one line contains an integer p(p<210), described in the problem description above. p is guranteed to be a prime.

 
Output
For each test case, you should print 2p lines of p integers.

The j-th(1≤j≤p) integer of i-th(1≤i≤p) line denotes the value of (i−1)+(j−1). The j-th(1≤j≤p) integer of (p+i)-th(1≤i≤p) line denotes the value of (i−1)⋅(j−1).

 
Sample Input
1
2
 
Sample Output
0 1
1 0
0 0
0 1
分析:比赛的时候做出来的队友说的是数论结论题,比赛后我是按照题目意思直接模拟A掉的。。
  根据题目给出的数字p按照题目的意思我们可以得到一个2*p行,p列的矩阵
  其中1<=i<=p,1<=j<=p时:mapn[i][j] = ((i-1)+(j-1))%p
    p+1<=i<=2*p,1<=j<=p时:mapn[i][j] = ((i-1)*(j-1))%p
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = pow(2,10)+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
ll mapn[2*maxn][maxn];
int main() {
ll T, p;
scanf("%lld",&T);
while(T--) {
memset(mapn,0,sizeof(mapn));
scanf("%lld",&p);
for( ll i = 1; i <= 2*p; i ++ ) {
for( ll j = 1; j <= p; j ++ ) {
if( i <= p ) {
mapn[i][j] = ((i-1)+(j-1))%p;
} else {
mapn[i][j] = (i-1)*(j-1)%p;
}
if( j != p ) {
printf("%lld ",mapn[i][j]);
} else {
printf("%lld\n",mapn[i][j]);
}
}
}
}
return 0;
}

  

2018中国大学生程序设计竞赛 - 网络选拔赛 hdu 6440 Dream 模拟的更多相关文章

  1. 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Tree and Permutation 找规律+求任意两点的最短路

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  2. 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Find Integer 数论

    Find Integer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  3. 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...

  4. 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...

  5. 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. HDU - 6440 Dream 2018中国大学生程序设计竞赛 - 网络选拔赛

    给定的\(p\)是素数,要求给定一个加法运算表和乘法运算表,使\((m+n)^p = m^p +n^p(0 \leq m,n < p)\). 因为给定的p是素数,根据费马小定理得 \((m+n) ...

  7. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...

  8. 2018中国大学生程序设计竞赛 - 网络选拔赛 Dream hdu6440 Dream 给出一个(流氓)构造法

    http://acm.hdu.edu.cn/showproblem.php?pid=6440 题意:让你重新定义任意一对数的乘法和加法结果(输出乘法口诀表和加法口诀表),使得m^p+n^p==(m+n ...

  9. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6152 Friend-Graph(暴力搜索)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6152 Problem Description It is well known that small ...

随机推荐

  1. ld: warning: directory not found for option ''

    iOS开发中经常遇到这样的警告,如图所示: 原因是存在未用到的目录. 解决方法:选择Build Settings,找到Search Paths中的Library Search Paths,如下图 删除 ...

  2. ajax具体实现学习记录

    记录自己对ajax\的理解, 首先要明白ajax是为了解决什么问题,简单来讲就是为了局部刷新页面,而不刷新整个界面.就比如现在有一个实时热度的显示,它是不断变化的,所以你肯定要不停的从数据库当中获取热 ...

  3. sqoop 密码别名模式 --password-alias

    sqoop要使用别名模式隐藏密码 1.首先使用命令创建别名 hadoop credential create xiaopengfei  -provider jceks://hdfs/user/pass ...

  4. 灰度级分层(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 灰度级分层通常用于突出感兴趣的特定灰度范围内的亮度.灰度级分层有两大基本方法. 将感兴趣的灰度范围内的值显示为一个值(比如0),而其他范围的值为另外一个值(255). 将感兴趣的灰度范 ...

  5. 11、增强型for循环对二维数组的输出(test8.java)

    由于笔者原因,这部分知识,尚不能整理出代码,笔者会好好学习增强型for循环中迭代起的相关知识,在笔者有能力,书写好这段代码后,将对本篇文章,进行二次修改,也同时欢迎大家与笔者交流,共同学习,共同进步. ...

  6. caddy & grpc(3) 为 caddy 添加一个 反向代理插件

    caddy-grpc 为 caddy 添加一个 反向代理插件 项目地址:https://github.com/yhyddr/caddy-grpc 前言 上一次我们学习了如何在 Caddy 中扩展自己想 ...

  7. java中File IO流的笔记

    1.File文件的属性和操作 boolean exists( )  判断文件或目录是否存在boolean isFile( )  判断是否是文件boolean isDirectory( ) 判断是否是目 ...

  8. Tomcat源码分析 (四)----- Pipeline和Valve

    在 Tomcat源码分析 (二)----- Tomcat整体架构及组件 中我们简单分析了一下Pipeline和Valve,并给出了整体的结构图.而这一节,我们将详细分析Tomcat里面的源码. Val ...

  9. Powered by .NET Core 进展:第5次发布尝试(Windows部署)

    (图注:Windows 自带的性能监控,红色表示 CPU 占用,绿色表示 QPS) 今天中午 12:30 左右,我们进行了 .NET Core 博客站点的第5次发布(页脚会显示"Powere ...

  10. 洛谷 P1357 花园

    题意简述 一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 题解思路 由于\(m<=5\)所以很显然状压 但由于\(n<=10^{15}\).可以考虑用矩阵加 ...