Dream

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1014    Accepted Submission(s): 200
Special Judge

Problem Description
Freshmen frequently make an error in computing the power of a sum of real numbers, which usually origins from an incorrect equation (m+n)p=mp+np, where m,n,p are real numbers. Let's call it ``Beginner's Dream''.

For instance, (1+4)2=52=25, but 12+42=17≠25. Moreover, 9+16−−−−−√=25−−√=5, which does not equal 3+4=7.

Fortunately, in some cases when p is a prime, the identity

(m+n)p=mp+np

holds true for every pair of non-negative integers m,n which are less than p, with appropriate definitions of addition and multiplication.

You are required to redefine the rules of addition and multiplication so as to make the beginner's dream realized.

Specifically, you need to create your custom addition and multiplication, so that when making calculation with your rules the equation (m+n)p=mp+np is a valid identity for all non-negative integers m,n less than p. Power is defined as

ap={1,ap−1⋅a,p=0p>0

Obviously there exists an extremely simple solution that makes all operation just produce zero. So an extra constraint should be satisfied that there exists an integer q(0<q<p) to make the set {qk|0<k<p,k∈Z} equal to {k|0<k<p,k∈Z}. What's more, the set of non-negative integers less than p ought to be closed under the operation of your definitions.

Hint

Hint for sample input and output:
From the table we get 0+1=1, and thus (0+1)2=12=1⋅1=1. On the other hand, 02=0⋅0=0, 12=1⋅1=1, 02+12=0+1=1.
They are the same.

 
Input
The first line of the input contains an positive integer T(T≤30) indicating the number of test cases.

For every case, there is only one line contains an integer p(p<210), described in the problem description above. p is guranteed to be a prime.

 
Output
For each test case, you should print 2p lines of p integers.

The j-th(1≤j≤p) integer of i-th(1≤i≤p) line denotes the value of (i−1)+(j−1). The j-th(1≤j≤p) integer of (p+i)-th(1≤i≤p) line denotes the value of (i−1)⋅(j−1).

 
Sample Input
1
2
 
Sample Output
0 1
1 0
0 0
0 1
分析:比赛的时候做出来的队友说的是数论结论题,比赛后我是按照题目意思直接模拟A掉的。。
  根据题目给出的数字p按照题目的意思我们可以得到一个2*p行,p列的矩阵
  其中1<=i<=p,1<=j<=p时:mapn[i][j] = ((i-1)+(j-1))%p
    p+1<=i<=2*p,1<=j<=p时:mapn[i][j] = ((i-1)*(j-1))%p
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = pow(2,10)+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
ll mapn[2*maxn][maxn];
int main() {
ll T, p;
scanf("%lld",&T);
while(T--) {
memset(mapn,0,sizeof(mapn));
scanf("%lld",&p);
for( ll i = 1; i <= 2*p; i ++ ) {
for( ll j = 1; j <= p; j ++ ) {
if( i <= p ) {
mapn[i][j] = ((i-1)+(j-1))%p;
} else {
mapn[i][j] = (i-1)*(j-1)%p;
}
if( j != p ) {
printf("%lld ",mapn[i][j]);
} else {
printf("%lld\n",mapn[i][j]);
}
}
}
}
return 0;
}

  

2018中国大学生程序设计竞赛 - 网络选拔赛 hdu 6440 Dream 模拟的更多相关文章

  1. 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Tree and Permutation 找规律+求任意两点的最短路

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  2. 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Find Integer 数论

    Find Integer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  3. 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...

  4. 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...

  5. 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. HDU - 6440 Dream 2018中国大学生程序设计竞赛 - 网络选拔赛

    给定的\(p\)是素数,要求给定一个加法运算表和乘法运算表,使\((m+n)^p = m^p +n^p(0 \leq m,n < p)\). 因为给定的p是素数,根据费马小定理得 \((m+n) ...

  7. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...

  8. 2018中国大学生程序设计竞赛 - 网络选拔赛 Dream hdu6440 Dream 给出一个(流氓)构造法

    http://acm.hdu.edu.cn/showproblem.php?pid=6440 题意:让你重新定义任意一对数的乘法和加法结果(输出乘法口诀表和加法口诀表),使得m^p+n^p==(m+n ...

  9. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6152 Friend-Graph(暴力搜索)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6152 Problem Description It is well known that small ...

随机推荐

  1. 【iOS】stringWithFormat 保留小数点位数 float double

    以前就见过,如下: text = [NSString stringWithFormat:@"%.1f", percentageCompleted]; 但一直没在意.刚一时好奇,查了 ...

  2. .NET Core 3.0深入源码理解HttpClientFactory之实战

      写在前面 前面两篇文章透过源码角度,理解了HttpClientFactory的内部实现,当我们在项目中使用时,总会涉及以下几个问题: HttpClient超时处理以及重试机制 HttpClient ...

  3. 二叉查找树(查找、插入、删除)——C语言

    二叉查找树 二叉查找树(BST:Binary Search Tree)是一种特殊的二叉树,它改善了二叉树节点查找的效率.二叉查找树有以下性质: (1)若左子树不空,则左子树上所有节点的值均小于它的根节 ...

  4. .net开源生态,WTM与NCC

    天下大势,分久必合,合久必分.改朝换代都如花开花谢,过眼云烟,更别提开发语言的更迭了. 我们所坚持的,只是那最初的感动,那“只是在人群中多看了你一眼”的惊艳.三十年河东,三十年河西,不忘初心,方得始终 ...

  5. SpringBoot-Admin的使用

    [**前情提要**]Spring Boot Actuator 提供了对单个 Spring Boot 应用的监控,信息包含应用状态.内存.线程.堆栈等,比较全面的监控了 Spring Boot 应用的整 ...

  6. Flink Metrics 源码解析

    Flink Metrics 有如下模块: Flink Metrics 源码解析 -- Flink-metrics-core Flink Metrics 源码解析 -- Flink-metrics-da ...

  7. 使用Graphlab参加Kaggle比赛(2017-08-20 发布于知乎)

    之前用学生证在graphlab上申了一年的graphlab使用权(华盛顿大学机器学习课程需要)然后今天突然想到完全可以用这个东东来参加kaggle. 下午参考了一篇教程,把notebook上面的写好了 ...

  8. 用 程序 解决 windows防火墙 的 弹窗 问题

    今天用户反馈了一个问题,运行程序弹了个框 这个只有程序第一次运行会出来,之后就不会了. 当然改个程序名字,又会弹出来. 强烈怀疑是写到了注册表,果然被我找到了. “HKEY_LOCAL_MACHINE ...

  9. Docker入门-搭建docker私有仓库

    Docker Hub 目前Docker官方维护了一个公共仓库Docker Hub,其中已经包括了数量超过15000个镜像.大部分需求都可以通过在Docker Hub中直接下载镜像来使用. 注册登录 可 ...

  10. 理解-NumPy

    # 理解 NumPy 在这篇文章中,我们将介绍使用NumPy的基础知识,NumPy是一个功能强大的Python库,允许更高级的数据操作和数学计算. # 什么是 NumPy? NumPy是一个功能强大的 ...