描述

给定一个整数,编写一个函数来判断它是否是 2 的幂次方。

示例 1:

输入: 1
输出: true
解释: 2^0 = 1

示例 2:

输入: 16
输出: true
解释: 2^4 = 16

示例 3:

输入: 218
输出: false

解法 1:判断整数 \(x\) 的二进制表示中是否只有一位为1

实现方式 1:除以 2

让我们先来看一下 2 的幂有什么规律,

n 2 的幂 二进制表示
0 \(2^0 = 1\) 0000 0001
1 \(2^1 = 2\) 0000 0010
2 \(2^2 = 4\) 0000 0100
3 \(2^3 = 8\) 0000 1000
... ... ...

从上面可以看出,如果整数 \(x\) 是 2 的幂,将整数不断除以 2,除了 1 之外,其余的约数一定能被 2 整除。按照这样的想法,我们就能写出**解法 1 **的第一种实现。

Java 实现(非递归)

class Solution {
public boolean isPowerOfTwo(int x) {
if (x <= 0) {
return false;
}
while (x % 2 == 0) {
x /= 2;
}
return x == 1;
}
}

Python 实现(非递归)

class Solution:
def isPowerOfTwo(self, x):
"""
:type n: int
:rtype: bool
"""
if x <= 0:
return False
while x % 2 == 0:
x = x // 2
return x == 1

Java 实现(递归)

class Solution {
public boolean isPowerOfTwo(int x) {
return x > 0 && (x == 1 || (x % 2 == 0 && isPowerOfTwo(x / 2)));
}
}

Python 实现(递归)

class Solution:
def isPowerOfTwo(self, x):
"""
:type n: int
:rtype: bool
"""
return x > 0 and (x == 1 or (x % 2 == 0 and self.isPowerOfTwo(x // 2)))

复杂度分析

  • 时间复杂度:两种实现(递归和非递归)的时间复杂度都是 \(O(\log(x))\) 的,其中 \(x\) 表示该整数
  • 空间复杂度:非递归实现的空间复杂度是 \(O(1)\) 的,而递归实现的空间复杂度是 \(O(\log(x))\),因此递归实现占用系统栈的空间,递归的深度最多为 \(\log(x)\)

实现方式 2:位运算

对于实现方式 1,如果用二进制的角度看,就是判断整数的二进制表示的最右边一位是否为 1,如果为 1,则将该整数与 1 进行比较从而得到结果;如果不为 1,则将整数 \(x\) 右移一位(最高位补 0)。因此,我们就会想,是否有一种方式可以直接通过位运算就能达到目的,答案是肯定的。

让我们再来看看下面的表格有什么规律,

\(2^n\) \(2^n\) 的二进制表示 \(2^n - 1\) 的二进制表示
1 0000 0001 0000 0000
2 0000 0010 0000 0001
4 0000 0100 0000 0011
8 0000 1000 0000 0111
... ... ...

从表格中可以看出,如果整数 \(x\) 是 2 的幂的话,整数 \(x\) 与 \(x - 1\) 的二进制表示进行与运算,结果为 0,因此我们就可以写出解法 1 的第二种实现方式。

Java 实现

class Solution {
public boolean isPowerOfTwo(int x) {
return x > 0 && ((x & (x - 1)) == 0);
}
}

Python 实现

class Solution:
def isPowerOfTwo(self, x):
"""
:type n: int
:rtype: bool
"""
return x > 0 and (x & x - 1 == 0)

复杂度分析

  • 时间复杂度:\(O(1)\)
  • 空间复杂度:\(O(1)\)

【LeetCode题解】231_2的幂(Power-of-Two)的更多相关文章

  1. 【LeetCode题解】二叉树的遍历

    我准备开始一个新系列[LeetCode题解],用来记录刷LeetCode题,顺便复习一下数据结构与算法. 1. 二叉树 二叉树(binary tree)是一种极为普遍的数据结构,树的每一个节点最多只有 ...

  2. leetcode题解-122买卖股票的最佳时期

    题目 leetcode题解-122.买卖股票的最佳时机:https://www.yanbinghu.com/2019/03/14/30893.html 题目详情 给定一个数组,它的第 i 个元素是一支 ...

  3. 【LeetCode题解】3_无重复字符的最长子串(Longest-Substring-Without-Repeating-Characters)

    目录 描述 解法一:暴力枚举法(Time Limit Exceeded) 思路 Java 实现 Python 实现 复杂度分析 解法二:滑动窗口(双指针) 思路 Java 实现 Python 实现 复 ...

  4. 【LeetCode题解】225_用队列实现栈(Implement-Stack-using-Queues)

    目录 描述 解法一:双队列,入快出慢 思路 入栈(push) 出栈(pop) 查看栈顶元素(peek) 是否为空(empty) Java 实现 Python 实现 解法二:双队列,入慢出快 思路 入栈 ...

  5. 【LeetCode题解】232_用栈实现队列(Implement-Queue-using-Stacks)

    目录 描述 解法一:在一个栈中维持所有元素的出队顺序 思路 入队(push) 出队(pop) 查看队首(peek) 是否为空(empty) Java 实现 Python 实现 解法二:一个栈入,一个栈 ...

  6. 【LeetCode题解】844_比较含退格的字符串(Backspace-String-Compare)

    目录 描述 解法一:字符串比较 思路 Java 实现 Python 实现 复杂度分析 解法二:双指针(推荐) 思路 Java 实现 Python 实现 复杂度分析 更多 LeetCode 题解笔记可以 ...

  7. 【LeetCode题解】25_k个一组翻转链表(Reverse-Nodes-in-k-Group)

    目录 描述 解法一:迭代 思路 Java 实现 Python 实现 复杂度分析 解法二:递归(不满足空间复杂度) 思路 Java 实现 Python 实现 复杂度分析 更多 LeetCode 题解笔记 ...

  8. 【LeetCode题解】24_两两交换链表中的节点(Swap-Nodes-in-Pairs)

    目录 描述 解法一:迭代 思路 Java 实现 Python 实现 复杂度分析 解法二:递归(不满足空间复杂度要求) 思路 Java 实现 Python 实现 复杂度分析 更多 LeetCode 题解 ...

  9. 【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)

    目录 描述 解法一:排序算法(不满足时间复杂度要求) Java 实现 Python 实现 复杂度分析 解法二:最小堆 思路 Java 实现 Python 实现 复杂度分析 解法三:桶排序(bucket ...

  10. 【LeetCode题解】19_删除链表的倒数第N个节点(Remove-Nth-Node-From-End-of-List)

    目录 描述 解法:双指针 思路 Java 实现 Python 实现 复杂度分析 更多 LeetCode 题解笔记可以访问我的 github. 描述 给定一个链表,删除链表的倒数第 n 个节点,并且返回 ...

随机推荐

  1. 【加密算法】3DES

    一.简介 3DES(或称为Triple DES)是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)块密码的通称.它相当于是对每个数据块应用三次DES加密算 ...

  2. Spring Boot - Spring Data

    使用JPA 虽然JPA是一个标准,但spring中一般就是使用hibernate实现的 使用JPA(Java Persistence API,Java持久化API,是个规范,其实是借助Hibernat ...

  3. Spring Boot - StateMachine状态机

    是Spring Boot提供的状态机的现成实现. 理论(有点像工作流) 需要定义一些状态的枚举,以及一些引起状态变化的事件的枚举. 每个状态可以对应的创建一个继承自org.springframewor ...

  4. Openlayers地图量算功能

    http://openlayers.org/en/latest/examples/measure.html?q=measure   按官网的例子来就行,新建对象时注意加上命名空间   var vect ...

  5. 如何用c#本地代码实现与Webbrowser中的JavaScript交互

    关键词:.Net,Webbrowser,JavaScript,communication 参考: 链接:msdn实例-简单的相互调用 代码: [PermissionSet(SecurityAction ...

  6. map函数和reduce函数、filter函数的区别

    ①从参数方面来讲:map()函数: map()包含两个参数,第一个是参数是一个函数,第二个是序列(列表或元组).其中,函数(即map的第一个参数位置的函数)可以接收一个或多个参数.reduce()函数 ...

  7. AVFoundation - 拍照(Simple)

    1:基础 /* 1:获取可用输入设备 AVCaptureDevice 2:设置输入设备: [AVCaptureDeviceInput deviceInputWithDevice:self.captur ...

  8. Bootstrap框架(二)

    day58 巨幕 这是一个轻量.灵活的组件,它能延伸至整个浏览器视口来展示网站上的关键内容. Hello, world! This is a simple hero unit, a simple ju ...

  9. poj1220------高精度进制转换模板

    #include<iostream> #include<cstdio> #include<cstring> using namespace std; const i ...

  10. Elasticsearch-搜索推荐

    对于es中搜索推荐的功能的实现: 1.使用match_phrase_prefix来实现search-time搜索推荐,原理根match_phrase类似,唯一的区别是把最后一个term作为前缀去搜索, ...