RNN

循环神经网络,是非线性动态系统,将序列映射到序列,主要参数有五个:[Whv,Whh,Woh,bh,bo,h0][Whv,Whh,Woh,bh,bo,h0],典型的结构图如下:

  • 和普通神经网络一样,RNN有输入层输出层和隐含层,不一样的是RNN在不同的时间t会有不同的状态,其中t-1时刻隐含层的输出会作用到t时刻的隐含层.
  • 参数意义是: WhvWhv:输入层到隐含层的权重参数,WhhWhh:隐含层到隐含层的权重参数,WohWoh:隐含层到输出层的权重参数,bhbh:隐含层的偏移量,bobo输出层的偏移量,h0h0:起始状态的隐含层的输出,一般初始为0.
  • 不同时间的状态共享相同的权重w和偏移量b

RNN的计算方式

给定一个损失函数 L(z,y)=∑Tt=1L(zt,yt)L(z,y)=∑t=1TL(zt,yt)

RNN因为加入了时间序列,因此训练过程也是和之前的网络不一样,RNN的训练使用的是BPTT(Back Prropagation Through TIme),该方法是由Werbo等人在1990年提出来的。

上面的算法也就是求解梯度的过程,使用的也是经典的BP算法,并没有什么新鲜的。但是值得一提的是,在 t-1 时刻对 ht−1ht−1的求导值,也需加上t时刻的求导中对ht−1ht−1 的求导值,因此BPTT也是一个链式的求导过程。

但是因为上面算法中的第10行,在训练t时刻的时候,出现了t-1的参数,因此对单个的求导就变成了对整个之前状态的求导之和。

也正是因为存在长依赖关系,BPTT无法解决长时依赖问题(即当前的输出与前面很长的一段序列有关,一般超过十步就无能为力了),因为BPTT会带来所谓的梯度消失或梯度爆炸问题(the vanishing/exploding gradient problem)。

这篇文章很好的解释了为什么会产生梯度消失和为什么会梯度爆炸的问题,其实主要问题就是因为在BPTT算法中,以w为例,其求导过程的链太长,而太长的求导链在以tanh为激活函数(其求导值在0~1之间的BPTT中,连乘就会使得最终的求导为0,这就是梯度消失问题,也就是t时刻已经学习不到t-N时刻的参数了。当然,有很多方法去解决这个问题,如LSTMs便是专门应对这种问题的,还有一些方法,比如设计一个更好的初始参数以及更换激活函数(如换成ReLU激活函数)。

参数量

model.add(Embedding(output_dim=32, input_dim=2800, input_length=380))
model.add(SimpleRNN(units=16))
model.add(Dense(uints=256, activation=relu))
...
model.summary()
#output
simple_rnn_1 (SimpleRNN) param #
dense_1 (Dense) param #

其中:784=16+1616+1632( WhvWhv + WhhWhh + bhbh)

LSTM

假设我们试着去预测“I grew up in France... I speak fluent French”最后的词。当前的信息建议下一个词可能是一种语言的名字,但是如果我们需要弄清楚是什么语言,我们是需要先前提到的离当前位置很远的 France的上下文的。这说明相关信息和当前预测位置之间的间隔就肯定变得相当的大。

不幸的是,在这个间隔不断增大时,RNN会丧失学习到连接如此远的信息的能力。在理论上,RNN绝对可以处理"长期依赖"问题。人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN 肯定不能够成功学习到这些知识。Bengio, et al.等人对该问题进行了深入的研究,他们发现一些使训练 RNN 变得非常困难的根本原因。

然而,幸运的是,LSTM 并没有这个问题!

LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。

LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力!

所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构。

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,以一种非常特殊的方式进行交互。

核心思想

LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。

下一步是确定什么样的新信息被存放在细胞状态中。

我们把旧状态与 ftft 相乘,丢弃掉我们确定需要丢弃的信息。接着加上 it∗C~tit∗C~t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。

我们到目前为止都还在介绍正常的 LSTM。但是不是所有的 LSTM 都长成一个样子的。实际上,几乎所有包含 LSTM 的论文都采用了微小的变体。

图中最上面的一条线的状态即 s(t) 代表了长时记忆,而下面的 h(t)则代表了工作记忆或短时记忆。

参数量

model.add(Embedding(output_dim=32, input_dim=2800, input_length=380))
model.add(LSTM(32))
model.add(Dense(uints=256, activation=relu))
...
model.summary()
#output
lstm_1 (LSTM) param #

其中:8320=(32+32)324+4*32( WoWo + WCWC + WiWi + WfWf + bobo + bCbC + bibi + bfbf)。

GRU

LSTM有很多变体,其中较大改动的是Gated Recurrent Unit (GRU),这是由 Cho, et al. (2014)提出。它将忘记门和输入门合成了一个单一的 更新门。同样还混合了细胞状态和隐藏状态,和其他一些改动。最终的模型比标准的 LSTM模型要简单。效果和LSTM差不多,但是参数少了1/3,不容易过拟合。

参考:

理解 LSTM 网络

来自为知笔记(Wiz)

RNN & LSTM & GRU 的原理与区别的更多相关文章

  1. RNN,LSTM,GRU基本原理的个人理解

    记录一下对RNN,LSTM,GRU基本原理(正向过程以及简单的反向过程)的个人理解 RNN Recurrent Neural Networks,循环神经网络 (注意区别于recursive neura ...

  2. 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...

  3. RNN/LSTM/GRU/seq2seq公式推导

    概括:RNN 适用于处理序列数据用于预测,但却受到短时记忆的制约.LSTM 和 GRU 采用门结构来克服短时记忆的影响.门结构可以调节流经序列链的信息流.LSTM 和 GRU 被广泛地应用到语音识别. ...

  4. RNN - LSTM - GRU

    循环神经网络 (Recurrent Neural Network,RNN) 是一类具有短期记忆能力的神经网络,因而常用于序列建模.本篇先总结 RNN 的基本概念,以及其训练中时常遇到梯度爆炸和梯度消失 ...

  5. [PyTorch] rnn,lstm,gru中输入输出维度

    本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的. CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是pos ...

  6. RNN, LSTM, GRU cells

    项目需要,先简记cell,有时间再写具体改进原因 RNN cell LSTM cell: GRU cell: reference: 1.https://towardsdatascience.com/a ...

  7. 自己动手实现深度学习框架-7 RNN层--GRU, LSTM

    目标         这个阶段会给cute-dl添加循环层,使之能够支持RNN--循环神经网络. 具体目标包括: 添加激活函数sigmoid, tanh. 添加GRU(Gate Recurrent U ...

  8. NLP教程(5) - 语言模型、RNN、GRU与LSTM

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...

  9. RNN,GRU,LSTM

    2019-08-29 17:17:15 问题描述:比较RNN,GRU,LSTM. 问题求解: 循环神经网络 RNN 传统的RNN是维护了一个隐变量 ht 用来保存序列信息,ht 基于 xt 和 ht- ...

随机推荐

  1. 【BZOJ2127】happiness 最小割

    题目大意:有一个$n\times m$的矩阵,矩阵的每个位置上有一个同学,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦 ...

  2. DIV居中的几种方法

    1. body{ text-align:center; } 缺点:body内所有内容一并居中 2. .center{ position: fixed; left: 50%; } 缺点:需要设置posi ...

  3. 多线程编程,CPU是如何解决多线程内存访问问题的

    CPU对内存变量的修改是先读取内存数据到CPU Cache中,然后再由CPU做运算,运算完成后继续写入到内存中 在单核CPU中,这完全没有问题,然而在多核CPU中,每一个CPU核心都拥有自己独立的Ca ...

  4. ActiveMQ HelloWorld入门

    在P2P的消息模型中,双方通过队列交流,一个队列只有一个生产者和一个消费者.a.消息生产者 package com.ljq.durian.test.activemq; import javax.jms ...

  5. 阿里云使用镜像安装freepbx

    安装freepbx真的是历经坎坷,不过也收获了一些东西.freepbx可以通过源码安装也可以通过镜像安装.源码安装我们会在另外一篇文章中讲到,这里我们讲到的是镜像安装,在本地进行镜像安装还是比较简单的 ...

  6. Web服务(Apache、Nginx、Tomcat、Jetty)与应用(LAMP、CMS-WordPress&Ghost、Jenkins、Gitlab)

    Web服务和应用是目前信息技术领域的热门技术.如何使用Docker来运行常见的Web服务器(包括Apache.Nginx.Tomcat等),以及一些常用应用(LAMP.CMS等).包括具体的镜像构建方 ...

  7. C#中通过Lambda表达式为委托传入更多的参数

    如: DispatcherTimer dispatcherTimer = new DispatcherTimer(); dispatcherTimer.Tick += (o, e) => { d ...

  8. php中session的简单使用

    两个页面之间共享session,或者通过session来传递参数(其实session只是一个域而已,一个会话) 1. a.php中 <?php session_start();//开启sessi ...

  9. vue 分享知识点

    vue 分享模块清单 1.Vue 2.0之Vue实例和生命周期 2.vue 2.0之自定义指令 3.vue 2.0之观察者模式实现简单异步无限滚动 4.从JavaScript属性描述器剖析Vue.js ...

  10. nginx学习笔记(7)Nginx如何处理一个请求---转载

    如何防止处理未定义主机名的请求基于域名和IP混合的虚拟主机一个简单PHP站点配置 基于名字的虚拟主机 Nginx首先选定由哪一个虚拟主机来处理请求.让我们从一个简单的配置(其中全部3个虚拟主机都在端口 ...