P3197 [HNOI2008]越狱

题目描述

监狱有连续编号为\(1…N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

输入输出格式

输入格式:

输入两个整数 \(M,N\)

输出格式:

可能越狱的状态数,模100003取余

说明

\(1≤M≤10^8\)

\(1≤N≤10^{12}\)


我们发现,直接求发生越狱的状态不是不可能,但时间复杂度过不去,很难用矩阵乘法优化。

不妨反其道而行之,采用补集转换的思想

我们先求出所有可能的宗教分布,为\(M^N\)

然后减去所有不可能发生越狱的情况,为\(M*(M-1)^{N-1}\),即第一个房间有\(M\)种选择,其余房间因为要保证和前一个房间不同,所以只有\(M-1\)种选择

然后直接上快速幂即可


Code:

#include <cstdio>
#define ll long long
const ll mod=100003;
ll n,m,ans;
ll quick_pow(ll c,ll k)
{
ll f=1;
while(k)
{
if(k&1)
f=f*c%mod;
c=c*c%mod;
k>>=1;
}
return f;
}
int main()
{
scanf("%lld%lld",&m,&n);
ans=((quick_pow(m,n)-quick_pow(m-1,n-1)*m%mod)%mod+mod)%mod;
printf("%lld\n",ans);
return 0;
}

2018.7.7

洛谷 P3197 [HNOI2008]越狱 解题报告的更多相关文章

  1. 洛谷 P3197 [HNOI2008]越狱 题解

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...

  2. 洛谷P3197 HNOI2008 越狱

    题目传送门 实际上昨天大鸡哥已经讲过这题了,结果没记住,今天一道相似的题就挂了......吃一堑长一智啊. 思路大致是这样:如果直接算发生越狱的情况会比较复杂,所以可以用间接法,用安排的总方案-不会发 ...

  3. 洛谷 P1446 [HNOI2008]Cards 解题报告

    P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...

  4. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  5. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  6. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  7. 【洛谷P3197】越狱

    本来还想了一会dp-- 然而一看数据范围明显是数论-- 那么推一推.. 我们发现可以用总方案数减去不会越狱的方案数 那么我们考虑在长度为n的数列中填数 首先第一个位置有m种选择,后面的位置: 总方案: ...

  8. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  9. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

随机推荐

  1. RabbitMQ入门:远程过程调用(RPC)

    假如我们想要调用远程的一个方法或函数并等待执行结果,也就是我们通常说的远程过程调用(Remote Procedure Call).怎么办? 今天我们就用RabbitMQ来实现一个简单的RPC系统:客户 ...

  2. CHAPTER 8 Out of Darkness 第8章 走出黑暗

    CHAPTER 8 Out of Darkness 第8章 走出黑暗 We expect scientists to be trying to discover new things, and for ...

  3. 机器学习算法 --- SVM (Support Vector Machine)

    一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...

  4. Django FBV/CBV、中间件、GIT使用

    s5day82 内容回顾: 1. Http请求本质 Django程序:socket服务端 a. 服务端监听IP和端口 c. 接受请求 \r\n\r\n:请求头和请求体 \r\n & reque ...

  5. PHP处理表单数据的一个安全回顾(记录教训)

    曾经看过一个安全文章中写过这么一条 表单输入数据要做 htmlspecialchars_decode 表单输出数据要做htmlspecialchars 当时还不是很理解为什么,自己也没遇到问题,所以就 ...

  6. No.101_第二次团队会议

    时间的敲定 在这一次的会议中,明确了任务目标,将任务进行合理分配,并且规划了整个任务的时间节点,这对团队来说非常重要. 一.最终项目 在上一节课的时候,我们最终没有拿到学霸开发项目,最后爬虫也被选走了 ...

  7. [2017BUAA软工]结对项目

    软工结对项目 一. Github项目地址 https://github.com/crvz6182/sudoku_partner 二. PSP表格 Psp personal software progr ...

  8. 20172324《Java程序设计》第3周学习总结

    20172324<Java程序设计>第3周学习总结 教材学习内容总结 随机数,记住要返回的是指定的字符前一个. String类型的一些用法,例如concat(连接),toUpperCase ...

  9. ARP 询问之 校级路由器的猫腻

    前情 我为什么选定 172.17.174.73 这个 ip 来进行测试.戳前情 Scapy之ARP询问 前言 在一般家用路由器局域网下,进行 arp 广播,说:我是192.168.1.100,你们谁的 ...

  10. [usaco]2013-jan Liars and Truth Tellers 真假奶牛

    Description 约翰有N头奶牛,有一部分奶牛是真话奶牛,它们只说真话,而剩下的是假话奶牛,只说假话.有一天,约翰从奶牛的闲谈中陆续得到了M句话,第i句话出自第Xi头奶牛,它会告诉约翰第Yi头是 ...