洛谷 P3197 [HNOI2008]越狱 解题报告
P3197 [HNOI2008]越狱
题目描述
监狱有连续编号为\(1…N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。
输入输出格式
输入格式:
输入两个整数 \(M,N\)
输出格式:
可能越狱的状态数,模100003取余
说明
\(1≤M≤10^8\)
\(1≤N≤10^{12}\)
我们发现,直接求发生越狱的状态不是不可能,但时间复杂度过不去,很难用矩阵乘法优化。
不妨反其道而行之,采用补集转换的思想
我们先求出所有可能的宗教分布,为\(M^N\)
然后减去所有不可能发生越狱的情况,为\(M*(M-1)^{N-1}\),即第一个房间有\(M\)种选择,其余房间因为要保证和前一个房间不同,所以只有\(M-1\)种选择
然后直接上快速幂即可
Code:
#include <cstdio>
#define ll long long
const ll mod=100003;
ll n,m,ans;
ll quick_pow(ll c,ll k)
{
ll f=1;
while(k)
{
if(k&1)
f=f*c%mod;
c=c*c%mod;
k>>=1;
}
return f;
}
int main()
{
scanf("%lld%lld",&m,&n);
ans=((quick_pow(m,n)-quick_pow(m-1,n-1)*m%mod)%mod+mod)%mod;
printf("%lld\n",ans);
return 0;
}
2018.7.7
洛谷 P3197 [HNOI2008]越狱 解题报告的更多相关文章
- 洛谷 P3197 [HNOI2008]越狱 题解
P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...
- 洛谷P3197 HNOI2008 越狱
题目传送门 实际上昨天大鸡哥已经讲过这题了,结果没记住,今天一道相似的题就挂了......吃一堑长一智啊. 思路大致是这样:如果直接算发生越狱的情况会比较复杂,所以可以用间接法,用安排的总方案-不会发 ...
- 洛谷 P1446 [HNOI2008]Cards 解题报告
P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 【洛谷P3197】越狱
本来还想了一会dp-- 然而一看数据范围明显是数论-- 那么推一推.. 我们发现可以用总方案数减去不会越狱的方案数 那么我们考虑在长度为n的数列中填数 首先第一个位置有m种选择,后面的位置: 总方案: ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
随机推荐
- python3安装与环境配置和pip的基本使用
本文环境 系统: Windows10 Python版本: 3.6 安装 python安装包下载 可以选择安装版和解压版 安装版一键安装, 安装过程注意选择安装位置, xx To Path选项(勾选), ...
- java抽象类与接口区别
java抽象类与接口区别: abstract class和interface是Java语言中对于抽象类定义进行支持的两种机制,正是由于这两种机制的存在,才赋予了Java强大的面向对象能力. abstr ...
- ovs源码阅读--元组空间搜索算法
关于TTS(元组空间搜索算法)的详细介绍可以参考OVS+DPDK Datapath 包分类技术这篇文章,本文只对该篇博客进行简单的介绍,案例和部分图片来自于OVS+DPDK Datapath 包分类技 ...
- Plasma Cash 合约解读
作者介绍 虫洞社区·签约作者 steven bai Plasma Cash 合约解读 Plasma Cash 合约解读 1. 合约代码 2. 合约文件简单介绍 3. Plasma Cash 的基础数据 ...
- lsblk命令详解
基础命令学习目录首页 lsblk 默认是树形方式显示: $lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTsda 8:0 0 2. ...
- C++ 函数 函数的重载 有默认参数的函数
函数的重载 C++允许用同一函数名定义多个函数,这些函数的参数个数和参数类型不同.这就是函数的重载(function overloading). int max1(int a,int b, int c ...
- (第六周)课上Scrum站立会议演示
组名:连连看 组长:张政 组员:张金生.李权.武志远 时间:2016.10.13 20:20——20:40 会议内容: 已完成的内容: 1.选定编译语言,安装软件并配置环境,完成了游戏的基本模型. ...
- 团队项目-NABCD
用户需求分析与NABCD 模拟经营类(SIM)游戏:玩家模拟经营一家软件公司,平台初步定为Android. Need需求 任何一款游戏都要有自己的定位和目标群体,这些 iiMediaResearch数 ...
- 在Windows下制作静态库和动态库
一:静态库的创建 VC++6.0中new一个的为win32 static library工程,之后有二个选项.根据需求选吧. 具体的类或者函数的添加过程和标准的工程一样,直接创建新的类或者添加新 的. ...
- Chapter 9 软件实现
软件实现包括代码设计.设计审查.代码编写.代码走查.代码编译和单元测试等活动.程序设计语言有很多,从机器语言到高级语言一直发展.软件编码需要遵循一些规范,JAVA代码有适当的空行,代码行及行内空格.分 ...