1415. [NOI2005]聪聪和可可【记忆化搜索DP】
Description

Input
Output
Sample Input
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9
Sample Output
1.500
【输出样例2】
2.167
HINT
【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。
对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。
记忆化搜素,预处理一下猫的走法即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define N (1000+100)
using namespace std;
struct node
{
int to,next;
}edge[N*N*];
queue<int>q;
int head[N],num_edge;
int dis[N][N],Next[N][N],cnt[N];
double dp[N][N];
int n,m,s,t; void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Bfs(int now)
{
q.push(now);
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=head[x];i!=;i=edge[i].next)
if (!dis[now][edge[i].to] && edge[i].to!=now)
{
dis[now][edge[i].to]=dis[now][x]+;
q.push(edge[i].to);
}
}
} double Dfs(int x,int y)
{
if (dp[x][y]) return dp[x][y];
if (x==y) return dp[x][y]=;
if (dis[x][y]<=) return dp[x][y]=; dp[x][y]+=Dfs(Next[Next[x][y]][y],y)/(cnt[y]+); for (int i=head[y];i!=;i=edge[i].next)
dp[x][y]+=Dfs(Next[Next[x][y]][y],edge[i].to)/(cnt[y]+);
return ++dp[x][y];
} void WGL_orz(int x,int y)
{
if (x==y) Next[x][y]=x;
else
for (int i=head[x];i!=;i=edge[i].next)
if (!Next[x][y] || dis[edge[i].to][y]<dis[Next[x][y]][y] || dis[edge[i].to][y]==dis[Next[x][y]][y] && edge[i].to<Next[x][y])
Next[x][y]=edge[i].to;
} int main()
{
int u,v;
scanf("%d%d%d%d",&n,&m,&s,&t);
for (int i=;i<=m;++i)
{
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
cnt[u]++;cnt[v]++;
}
for (int i=;i<=n;++i)
Bfs(i);
for (int i=;i<=n;++i)
for (int j=;j<=n;++j)
WGL_orz(i,j);
printf("%0.3lf",Dfs(s,t));
}
1415. [NOI2005]聪聪和可可【记忆化搜索DP】的更多相关文章
- 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence
题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...
- BZOJ 1415: [Noi2005]聪聪和可可(记忆化搜索+期望)
传送门 解题思路 还是比较简答的一道题.首先\(bfs\)把每个点到其他点的最短路求出来,然后再记忆化搜索.记搜的时候猫的走法是确定的,搜一下老鼠走法就行了. 代码 #include<iostr ...
- BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- HNU OJ10086 挤挤更健康 记忆化搜索DP
挤挤更健康 Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 339, A ...
- HDU 1078 FatMouse and Cheese 记忆化搜索DP
直接爆搜肯定超时,除非你加了某种凡人不能想出来的剪枝...555 因为老鼠的路径上的点满足是递增的,所以满足一定的拓补关系,可以利用动态规划求解 但是复杂的拓补关系无法简单的用循环实现,所以直接采取记 ...
- 记忆化搜索 dp学习~2
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331 Function Run Fun Time Limit: 2000/1000 MS (Java/ ...
- 【10.31校内测试】【组合数学】【记忆化搜索/DP】【多起点多终点二进制拆位Spfa】
Solution 注意取模!!! Code #include<bits/stdc++.h> #define mod 1000000007 #define LL long long usin ...
- hdu1331&&hdu1579记忆化搜索(DP+DFS)
这两题是一模一样的``` 题意:给了一系列递推关系,但是由于这些递推很复杂,所以递推起来要花费很长的时间,所以我要编程序在有限的时间内输出答案. w(a, b, c): 如果a,b,c中有一个值小于等 ...
- BZOJ1048:[HAOI2007]分割矩阵(记忆化搜索DP)
Description 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个), 这样分割了(n-1)次后,原矩阵被分割成 ...
- HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
随机推荐
- Struts2 学习笔记--Action Method--接收参数
struts2中的路径问题 注意:在jsp中”/”表示tomcat服务器的根目录,在struts.xml配置文件中”/”表示webapp的根路径,即MyEclipse web项目中的WebRoot路径 ...
- K8S基础概念
一.核心概念 1.Node Node作为集群中的工作节点,运行真正的应用程序,在Node上Kubernetes管理的最小运行单元是Pod.Node上运行着Kubernetes的Kubelet.kube ...
- HDU3085(KB2-G 双向bfs)
Nightmare Ⅱ Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 浅谈脚本化css(三)之方块运动函数
我们可以写一个让小方块运动的函数: div#demo { width: 100px; ; position: absolute; ; ; } var div = document.getElement ...
- Qt中常用知识点
1:QRegExp 正则表达式 QRegExp regExp("[a-zA-Z][1-9][0-9]{0,2}"); xxx->setValidator(new QRegEx ...
- react解决roadhog buildDll 【转】
本地删了 node module 目录,重新安装的时候,提示 找了找,可如下解决 ------- 转自: https://www.cnblogs.com/huhanhaha/p/7605722.htm ...
- join() 方法详解及应用场景
总结:join方法的功能就是使异步执行的线程变成同步执行.也就是说,当调用线程实例的start方法后,这个方法会立即返回,如果在调用start方法后后需要使用一个由这个线程计算得到的值,就必须使用jo ...
- maven一键部署linux的tomcat(wagon-maven-plugin)
Maven是一个项目管理工具,它包含了一个项目对象模型 (Project Object Model),一组标准集合,一个项目生命周期(Project Lifecycle),一个依赖管理系统(Depen ...
- CSS深入理解之absolute(HTML/CSS)
absolute和float是同父异母的兄弟,因为它们具有相同点:包裹性与破坏性 absolute的特点 1.独立的,并且可以摆脱overflow的限制,无论是滚动还是隐藏: 2.无依赖,不受rela ...
- MsSQL使用加密连接SSL/TLS
说明 应用程序通过未加密的通道与数据库服务器通信, 这可能会造成重大的安全风险.在这种情况下, 攻击者可以修改用户输入的数据, 甚至对数据库服务器执行任意 SQL 命令. 例如,当您使用以下连接字符串 ...