Pandas | 06 描述性统计
有很多方法用来集体计算DataFrame的描述性统计信息和其他相关操作。 其中大多数是sum(),mean()等聚合函数。 一般来说,这些方法采用轴参数,就像ndarray.{sum,std,...},但轴可以通过名称或整数来指定:
- 数据帧(DataFrame) - “index”(axis=0,默认),columns(axis=1)
下面创建一个数据帧(DataFrame),并使用此对象进行演示本章中所有操作。
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df)
输出结果:
Age Name Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80
7 34 Lee 3.78
8 40 David 2.98
9 30 Gasper 4.80
10 51 Betina 4.10
11 46 Andres 3.65
sum()
返回所请求轴的值的总和。 默认情况下,轴为列名(axis=0)。
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.sum())
输出结果:
Age 382
Name TomJamesRickyVinSteveMinsuJackLeeDavidGasperBe...
Rating 44.92
dtype: object
示例axis=1
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.sum(1))
输出结果:
0 29.23
1 29.24
2 28.98
3 25.56
4 33.20
5 33.60
6 26.80
7 37.78
8 42.98
9 34.80
10 55.10
11 49.65
dtype: float64
mean()
返回平均值
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.mean())
输出结果:
Age 31.833333
Rating 3.743333
dtype: float64
std()
返回标准差。
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.std())
输出结果:
Age 9.232682
Rating 0.661628
dtype: float64
函数和说明
下面来了解Python Pandas中描述性统计信息的函数,下表列出了重要函数
| 编号 | 函数 | 描述 |
|---|---|---|
| 1 | count() |
非空观测数量 |
| 2 | sum() |
所有值之和 |
| 3 | mean() |
所有值的平均值 |
| 4 | median() |
所有值的中位数 |
| 5 | mode() |
值的模值 |
| 6 | std() |
值的标准偏差 |
| 7 | min() |
所有值中的最小值 |
| 8 | max() |
所有值中的最大值 |
| 9 | abs() |
绝对值 |
| 10 | prod() |
数组元素的乘积 |
| 11 | cumsum() |
累计总和 |
| 12 | cumprod() |
累计乘积 |
注 - 由于DataFrame是异构数据结构。通用操作不适用于所有函数。
- 类似于:
sum(),cumsum()函数能与数字和字符(或)字符串数据元素一起工作,不会产生任何错误。字符聚合从来都比较少被使用,虽然这些函数不会引发任何异常。 - 由于这样的操作无法执行,因此,当DataFrame包含字符或字符串数据时,像
abs(),cumprod()这样的函数会抛出异常。
汇总数据
describe()函数是用来计算有关DataFrame列的统计信息的摘要。
1. 描述数字系列
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe())
输出结果:
Age Rating
count 12.000000 12.000000
mean 31.833333 3.743333
std 9.232682 0.661628
min 23.000000 2.560000
25% 25.000000 3.230000
50% 29.500000 3.790000
75% 35.500000 4.132500
max 51.000000 4.800000
其结果将包括count,mean,std,min,max以及百分位数。默认情况下,百分位数分三档:25%,50%,75%,其中第50百分位数就是中位数。
count:计数,这一组数据中包含数据的个数
mean:平均值,这一组数据的平均值
std:标准差,这一组数据的标准差
min:最小值
max:最大值
百分位数:第p百分位数是这样一个值,它使得至少有p%的数据项小于或等于这个值,且至少有(100-p)%的数据项大于或等于这个值。以身高为例,身高分布的第五百分位表示有5%的人的身高小于此测量值,95%的身高大于此测量值。
2. 描述一个分类系列
import pandas as pd s = pd.Series(['a', 'a', 'b', 'c'])
print(s.describe())
输出结果:
count 4
unique 3
top a
freq 2
dtype: object
其结果包括count,unique,top,和freq。时间数据还包括first和last项目。 count:同上
unique:表示有多少种不同的值
top:数据中出现次数最高的值
freq:出现次数最高的那个值(top)的出现频率
3. 描述时间戳系列
import pandas as pd
import numpy as np s = pd.Series([np.datetime64("2000-01-01"),
np.datetime64("2010-01-01"),
np.datetime64("2010-01-01")
]) print(s.describe())
输出结果:
count 3
unique 2
top 2010-01-01 00:00:00
freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object
使用include和exclude参数来限制DataFrame中哪些列被分析输出
object- 汇总字符串列number- 汇总数字列all- 将所有列汇总在一起(不应将其作为列表值传递)
(1)如果include ='all'作为选项提供,所有列,而不管数据类型如何。
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(include='all'))
输出结果:
Name Age Rating
count 12 12.000000 12.000000
unique 12 NaN NaN
top Steve NaN NaN
freq 1 NaN NaN
mean NaN 31.833333 3.743333
std NaN 9.232682 0.661628
min NaN 23.000000 2.560000
25% NaN 25.000000 3.230000
50% NaN 29.500000 3.790000
75% NaN 35.500000 4.132500
max NaN 51.000000 4.800000 (2)在DataFrame描述中只包含字符串列
import pandas as pd
import numpy as np d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(include=[np.object]))
(3)在DataFrame描述中仅包含数字列
import pandas as pd
import numpy as np d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(include=[np.number]))
输出结果:
Age Rating
count 12.000000 12.000000
mean 31.833333 3.743333
std 9.232682 0.661628
min 23.000000 2.560000
25% 25.000000 3.230000
50% 29.500000 3.790000
75% 35.500000 4.132500
max 51.000000 4.800000 从DataFrame描述中排除对象列。
import pandas as pd
import numpy as np d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(exclude=[np.object]))
输出结果:
Age Rating
count 12.000000 12.000000
mean 31.833333 3.743333
std 9.232682 0.661628
min 23.000000 2.560000
25% 25.000000 3.230000
50% 29.500000 3.790000
75% 35.500000 4.132500
max 51.000000 4.800000
import pandas as pd
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(include=['object']))
输出结果:
Name
count 12
unique 12
top Ricky
freq 1
df.describe(include=['object'])
df.describe(include='object')
df.describe(include=np.object)
Pandas | 06 描述性统计的更多相关文章
- Pandas 之 描述性统计案例
认识 jupyter地址: https://nbviewer.jupyter.org/github/chenjieyouge/jupyter_share/blob/master/share/panda ...
- Pandas描述性统计
有很多方法用来集体计算DataFrame的描述性统计信息和其他相关操作. 其中大多数是sum(),mean()等聚合函数,但其中一些,如sumsum(),产生一个相同大小的对象. 一般来说,这些方法采 ...
- pandas(5):数学统计——描述性统计
Pandas 可以对 Series 与 DataFrame 进行快速的描述性统计,方便快速了解数据的集中趋势和分布差异.源Excel文件descriptive_statistics.xlsx: 一.描 ...
- Python实现描述性统计
该篇笔记由木东居士提供学习小组.资料 描述性统计的概念很好理解,在日常工作中我们也经常会遇到需要使用描述性统计来表述的问题.以下,我们将使用Python实现一系列的描述性统计内容. 有关python环 ...
- 使用Python进行描述性统计
目录 1 描述性统计是什么?2 使用NumPy和SciPy进行数值分析 2.1 基本概念 2.2 中心位置(均值.中位数.众数) 2.3 发散程度(极差,方差.标准差.变异系数) 2.4 偏差程度(z ...
- \(\S1\) 描述性统计
在认识客观世界的过程中,统计学的思想和方法经常起着不可替代的作用.在许多工程及自然科学的专业领域中,包括可靠性分析.质量控制.生物信息.脑科学.心理分析.经济分析.金融风险管理.社会科学推断.行为科学 ...
- 基于R语言的数据分析和挖掘方法总结——描述性统计
1.1 方法简介 描述性统计包含多种基本描述统计量,让用户对于数据结构可以有一个初步的认识.在此所提供之统计量包含: 基本信息:样本数.总和 集中趋势:均值.中位数.众数 离散趋势:方差(标准差).变 ...
- SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类
https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf- ...
- Lesson6——Pandas Pandas描述性统计
1 简介 描述统计学(descriptive statistics)是一门统计学领域的学科,主要研究如何取得反映客观现象的数据,并以图表形式对所搜集的数据进行处理和显示,最终对数据的规律.特征做出综合 ...
随机推荐
- Nginx 的 Timeout Wait 解决
1.问题解决办法 查看Nginx并发状态 #netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}' TIME_WAIT ...
- SWIG 3 中文手册——3. Windows 上使用 SWIG
目录 3 Windows 上使用 SWIG 后续章节 3 Windows 上使用 SWIG 暂时略过. 后续章节 <4. 脚本语言>
- 【layui】设置select只向下展开
加css .layui-form-selectup dl { bottom: auto; }
- 获取Url地址中参数的3种方法【华为云技术分享】
获取Url的代码如下:window.location.href; 方法一:原生js(假设已经获得了Url地址) var url = 'https://gitbook.cn/gitchat/geekbo ...
- 【04】Saltstack:配置管理
写在前面的话 当我们需要进行一系列可重复且复杂的操作的时候,如果还继续用传统的 cmd.run 来执行显然难以满足我们的需求.这时候就会在想一个问题,我们能不能把这些操作编辑成一个类似脚本的操作,我们 ...
- sql server 分页总结
1.第一种方式:使用 ROW_NUMBER() OVER(ORDER BY ID) …… BETWEEN AND 的方式SELECT * FROM( SELECT ROW_NUMBER() OVER( ...
- python 排序 归并排序
算法思想 迭代法: 归并算法一共有两种思想,笼统的说,这两种思想的区别就在于一种不分割未排序的序列(直接将序列看为n个个数为1的子序列),这种称为---迭代法 直接从队头开始,两两合并为一个个数为2的 ...
- 如何从ubuntu或PC传递文件到板子,ubuntu如何上网?
3.3 如何从ubuntu或PC传递文件到板子,ubuntu如何上网? 答:以下将分别介绍如何在ubuntu和windows下如何传递文件. ubuntu如何配置上网?ubuntu 上网:打开Orac ...
- 【开发笔记】- AbstractRoutingDataSource动态数据源切换,AOP实现动态数据源切换
AbstractRoutingDataSource动态数据源切换 上周末,室友通宵达旦的敲代码处理他的多数据源的问题,搞的非常的紧张,也和我聊了聊天,大概的了解了他的业务的需求.一般的情况下我们都是使 ...
- 英语CollaCoriiAsini阿胶CollaCoriiAsini单词
阿胶(colla Corii Asini)始载于<神农本草经>,是马科动物驴的皮去毛后熬制而成的胶块,其性味甘.平,具有滋阴润肺,补血.止血等功效.主要治疗血虚萎黄,眩晕心悸,肌痿无力,心 ...