转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes

网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码;在此通过借鉴资料实现了一些经典降维算法的Demo(python),同时也给出了参考资料的链接。

降维算法 资料链接 展示
PCA

https://blog.csdn.net/u013719780/article/details/78352262

https://blog.csdn.net/weixin_40604987/article/details/79632888

KPCA

https://blog.csdn.net/u013719780/article/details/78352262

https://blog.csdn.net/weixin_40604987/article/details/79632888

LDA

https://blog.csdn.net/ChenVast/article/details/79227945

https://www.cnblogs.com/pinard/p/6244265.html

MDS https://blog.csdn.net/zhangweiguo_717/article/details/69663452?locationNum=10&fps=1  
ISOMAP

https://blog.csdn.net/zhangweiguo_717/article/details/69802312

http://www-clmc.usc.edu/publications/T/tenenbaum-Science2000.pdf

LLE

https://blog.csdn.net/scott198510/article/details/76099630

https://www.cnblogs.com/pinard/p/6266408.html?utm_source=itdadao&utm_medium=referral

TSNE http://bindog.github.io/blog/2018/07/31/t-sne-tips/
AutoEncoder 无 
FastICA https://blog.csdn.net/lizhe_dashuju/article/details/50263339  
SVD

https://blog.csdn.net/m0_37870649/article/details/80547167

https://www.cnblogs.com/pinard/p/6251584.html

 
LE

https://blog.csdn.net/hustlx/article/details/50850342#

https://blog.csdn.net/jwh_bupt/article/details/8945083

LPP

https://blog.csdn.net/qq_39187538/article/details/90402961

https://blog.csdn.net/xiaohen123456/article/details/82288222


每一个代码都可以单独运行,但是只是作为一个demo,仅供学习使用环境: python3.6 ubuntu18.04(windows10)
 需要的库: numpy sklearn tensorflow matplotlib

  • 其中AutoEncoder只是使用AutoEncoder简单的实现了一个PCA降维算法,自编码器涉及到了深度学习领域,其本身就是一个非常大领域
  • LE算法的鲁棒性极差,对近邻的选择和数据分布十分敏感
  • 2019.6.20添加了LPP算法,但是效果没有论文上那么好,有点迷,后续需要修改

降维算法整理--- PCA、KPCA、LDA、MDS、LLE 等的更多相关文章

  1. 四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

    四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映 ...

  2. 【转】四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

    最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映 ...

  3. 机器学习--降维算法:PCA主成分分析

    引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质.而这些数学性质将成为PCA的理论基础. 理论描述 向量运算即:内积.首先,定义两个维数相同的向量的内积为: (a1,a2,⋯,an ...

  4. ML: 降维算法-概述

    机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达, y是数据点映射后的低维向量 ...

  5. ML: 降维算法-LLE

    局部线性嵌入 (Locally linear embedding)是一种非线性降维算法,它能够使降维后的数据较好地保持原有 流形结构 .LLE可以说是流形学习方法最经典的工作之一.很多后续的流形学习. ...

  6. PCA 降维算法详解 以及代码示例

    转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analys ...

  7. 机器学习 降维算法: isomap & MDS

    最近在看论文的时候看到论文中使用isomap算法把3D的人脸project到一个2D的image上.提到降维,我的第一反应就是PCA,然而PCA是典型的线性降维,无法较好的对非线性结构降维.ISOMA ...

  8. sklearn LDA降维算法

    sklearn LDA降维算法 LDA(Linear Discriminant Analysis)线性判断别分析,可以用于降维和分类.其基本思想是类内散度尽可能小,类间散度尽可能大,是一种经典的监督式 ...

  9. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

随机推荐

  1. javascript_17-基本类型和引用类型

    基本类型 直接存储值 Number . String .Boolean undefined.null 引用类型 存储引用 -Object.Array.Date.函数 包装基本类型--引用类型 func ...

  2. 190919 centos系统中python2卸载重装

    问题:某些原因卸载了python2,连带卸载了yum工具. 解决思路: 如果服务器没有什么东西,重装系统最省事.但是如果不允许重装,那就只能按部就班的恢复python2和yum. 步骤: 删除pyth ...

  3. eclipse更改web项目访问路径(修改配置文件)

    1.打开你的web项目,然后找到 .settings文件夹,如果你的项目中没有这个文件夹,请搜索如何显示web项目中的隐藏文件夹就能够看到了. 2.打开.settings文件夹找到这个文件. 3.在这 ...

  4. event.target事件

    event.target <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  5. Java抽象语法树AST,JCTree 分析

    JCTree简要分析文章目录JCTree简要分析JCAnnotatedTypeJCAnnotationJCArrayAccessJCArrayTypeTreeJCAssertJCAssignJCAss ...

  6. typescript 箭头表达式

    箭头表达式:用来声明匿名函数,消除传统匿名函数的this指针问题 1.无参 var sum = () => {} 2.一个参数 var sum = arg2 => {} 3.多个参数 va ...

  7. Kotlin伴生对象及其字节码内幕详解

    继续面向对象,开撸就是!! 接口: 我们知道对于JDK8之后接口中除了方法的声明之后还可以有default方法的,而在Kotlin中也类似,下面来看一下在Kotlin接口相关的东东: 很显然就是一个方 ...

  8. JQuery的入门(二)

    Jquery的遍历 jQuery对象本身就是数组对象,通过jquery选择器获得的都是满足该选择器条件的元素对象的集合体,因此在常常需要对jquery对象进行遍历.这里有三种遍历Jquery的方法. ...

  9. Django admin中文报错Incorrect string value 解决办法

  10. map json 字符串 对象之间的相互转化

    1.对象与字符串之间的互转 将对象转换成为字符串 String str = JSON.toJSONString(infoDo); 字符串转换成为对象 InfoDo infoDo = JSON.pars ...