有两个性质需要知道:

$1.$ 对于任意的 $f[i]=f[i-1]+f[i-2]$ 的数列,都有 $f[i]=fib[i-2]\times f[1]+fib[i-1]\times f[2]$

其中 $fib[i]$ 为第 $i$ 项斐波那契数列.

$2$. 对于任意满足上述条件的数列,都有 $\sum_{i=1}^{n}f[i]=f[n+2]-f[2]$

$3.$ 任意两断满足上述条件的数列每一项依次叠加,依然满足 $g[i]=g[i-1]+g[i-2]$,且上述两个性质都满足.

$4.$ 任何一段斐波那契数列也满足上述所有性质.

有了上述预备知识后,再考虑这道题:

我们用线段树来维护区间和,线段树上每个节点维护 $3$ 个信息,为 $sum,f1,f2$

即节点所维护的区间和,以及该节点及线段树中区间要加上一个前两项为 $f1,f2$ 的上述递推数列.

那么,我们只需考虑如何下传标记,如何查询即可.

假设当前节点已经有了 $f1,f2$,那么将标记下传给左子树是轻松的:直接下传即可,区间和的贡献可按照上述公式 $O(1)$ 求出.

而如果要下传给右儿子的话就不能直接传了,因为右儿子区间开头的两项并不是 $f1,f2$.

而根据上述三条性质,我们知道斐波那契数列的任何一段也是斐波那契数列.

所以,直接算出右儿子的 $f1,f2$ 即 $f1\times fib[mid-l]+f2\times fib[mid-l+1]$ 与 $f1\times fib[mid-l+1]+f2\times fib[mid-l+2]$

然后还知道 $f1,f2$ 都满足叠加性,所以直接叠加到左右儿子的 $f1,f2$ 上即可.

#include <bits/stdc++.h>
#define N 400004
#define LL long long
#define lson now<<1
#define rson now<<1|1
#define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
const LL mod=1000000009;
int n,m;
LL fib[N<<1],sum[N<<1];
struct node
{
LL f1,f2,sum;
int l,r,len;
}t[N<<2];
void build(int l,int r,int now)
{
t[now].l=l;
t[now].r=r;
t[now].len=r-l+1;
if(l==r) return ;
int mid=(l+r)>>1;
if(l<=mid) build(l,mid,lson);
if(r>mid) build(mid+1,r,rson);
}
void mark(int now,LL f1,LL f2)
{
(t[now].f1+=f1)%=mod;
(t[now].f2+=f2)%=mod;
(t[now].sum+=f1*fib[t[now].len]%mod+f2*fib[t[now].len+1]%mod-f2+mod)%=mod;
}
void pushup(int now)
{
t[now].sum=(t[lson].sum+t[rson].sum)%mod;
}
void pushdown(int now)
{
if(t[now].f1==0&&t[now].f2==0) return;
int mid=(t[now].l+t[now].r)>>1;
mark(lson,t[now].f1,t[now].f2);
if(t[now].r>mid)
mark(rson,t[now].f1*fib[t[lson].len-1]%mod+t[now].f2*fib[t[lson].len]%mod,t[now].f1*fib[t[lson].len]%mod+t[now].f2*fib[t[lson].len+1]%mod);
t[now].f1=t[now].f2=0;
}
void update(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
mark(now,fib[l-L+1],fib[l-L+2]);
return;
}
pushdown(now);
int mid=(l+r)>>1;
if(L<=mid) update(l,mid,lson,L,R);
if(R>mid) update(mid+1,r,rson,L,R);
pushup(now);
}
LL query(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
return t[now].sum;
}
pushdown(now);
int mid=(l+r)>>1;
LL re=0ll;
if(L<=mid) re+=query(l,mid,lson,L,R);
if(R>mid) re+=query(mid+1,r,rson,L,R);
return re%mod;
}
int main()
{
// setIO("input");
int i,j;
scanf("%d%d",&n,&m);
fib[1]=fib[2]=1;
for(i=3;i<N;++i) fib[i]=(fib[i-1]+fib[i-2])%mod;
for(i=1;i<=n;++i) scanf("%lld",&sum[i]), (sum[i]+=sum[i-1])%=mod;
build(1,n,1);
for(i=1;i<=m;++i)
{
int opt,l,r;
scanf("%d%d%d",&opt,&l,&r);
if(opt==1) update(1,n,1,l,r);
else printf("%lld\n",(query(1,n,1,l,r)+sum[r]-sum[l-1]+mod*2)%mod);
}
return 0;
}

  

CF446C DZY Loves Fibonacci Numbers 线段树 + 数学的更多相关文章

  1. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  2. codeforces 446C DZY Loves Fibonacci Numbers 线段树

    假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. ...

  3. Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]

    洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...

  4. Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

    第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...

  5. 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers

    我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...

  6. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  7. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  8. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  9. Codeforces 446C —— DZY Loves Fibonacci Numbers(线段树)

    题目:DZY Loves Fibonacci Numbers 题意比較简单,不解释了. 尽管官方的题解也是用线段树,但还利用了二次剩余. 可是我没有想到二次剩余,然后写了个感觉非常复杂度的线段树,还是 ...

随机推荐

  1. macbook下使用pycharm2019版本配置远程连接服务器

    pycharm提供了很方便的与服务器同步代码,并执行的插件.我在配置windows版的pycharm时配置成功,在挪用到mac上则遇到了些许问题,终于是解决了,在此记录配置的过程 目的:pycharm ...

  2. SAS学习笔记62 通过压缩变量长度来实现数据集压缩

    有时候从其他数据库过来的字符型变量Length很长,导致数据集文件很大,可以通过压缩变量长度来实现数据集压缩 具体思路: LENGTH语句设置所有变量真实长度 SET数据集的时候对原有变量进行RENA ...

  3. Elasticsearch-6.7.0系列(七)SpringCloud连接ES集群,使用ES用户名密码

    pom.xml代码: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://ww ...

  4. linux route详细解读

    route命令用于显示和操作IP路由表.要实现两个不同的子网之间的通信,需要一台连接两个网络的路由器,或者同时位于两个网络的网关来实现.在Linux系统中,设置路由通常是 为了解决以下问题:该Linu ...

  5. sql 分组后重复数据取时间最新的一条记录

    1.取时间最新的记录 不分组有重复(多条CreateTime一样的都是最新记录) select * from test t where pid in ( select PId from Test t ...

  6. RabbitMQ实战

    RabbitMQ消息队列 一.Hello World 1.amqp-client客户端依赖 2.Rabbitmq类与方法 二.交换机类型 Exchange Type 1.消息轮询分发(Round Ro ...

  7. Vue使用QRCode.js生成二维码

    1.安装qrcode npm install qrcode 2.组件中引入qrcode import QRCode from 'qrcode' 3.html代码 <div><span ...

  8. Map转url ,url转Map工具类

    /** * 将url参数转换成map * @param param aa=11&bb=22&cc=33 * @return */ public static Map<String ...

  9. 将Centos7的yum配置为阿里云的镜像(完美解决yum下载太慢的问题)

    2017-02-17 16:02:30 张老湿 阅读数 13768     http://mirrors.aliyun.com/help/centos?spm=5176.bbsr150321.0.0. ...

  10. Python学习日记(二十三) 类命名空间和组合

    类命名空间 在一个类中它的函数(方法)属于动态属性,直接定义的变量属于静态属性 首先先定义一个类,并在这个类里面加入静态变量.属性等然后将一个对象实例化 class Fighter: #定义一个战机的 ...