有两个性质需要知道:

$1.$ 对于任意的 $f[i]=f[i-1]+f[i-2]$ 的数列,都有 $f[i]=fib[i-2]\times f[1]+fib[i-1]\times f[2]$

其中 $fib[i]$ 为第 $i$ 项斐波那契数列.

$2$. 对于任意满足上述条件的数列,都有 $\sum_{i=1}^{n}f[i]=f[n+2]-f[2]$

$3.$ 任意两断满足上述条件的数列每一项依次叠加,依然满足 $g[i]=g[i-1]+g[i-2]$,且上述两个性质都满足.

$4.$ 任何一段斐波那契数列也满足上述所有性质.

有了上述预备知识后,再考虑这道题:

我们用线段树来维护区间和,线段树上每个节点维护 $3$ 个信息,为 $sum,f1,f2$

即节点所维护的区间和,以及该节点及线段树中区间要加上一个前两项为 $f1,f2$ 的上述递推数列.

那么,我们只需考虑如何下传标记,如何查询即可.

假设当前节点已经有了 $f1,f2$,那么将标记下传给左子树是轻松的:直接下传即可,区间和的贡献可按照上述公式 $O(1)$ 求出.

而如果要下传给右儿子的话就不能直接传了,因为右儿子区间开头的两项并不是 $f1,f2$.

而根据上述三条性质,我们知道斐波那契数列的任何一段也是斐波那契数列.

所以,直接算出右儿子的 $f1,f2$ 即 $f1\times fib[mid-l]+f2\times fib[mid-l+1]$ 与 $f1\times fib[mid-l+1]+f2\times fib[mid-l+2]$

然后还知道 $f1,f2$ 都满足叠加性,所以直接叠加到左右儿子的 $f1,f2$ 上即可.

#include <bits/stdc++.h>
#define N 400004
#define LL long long
#define lson now<<1
#define rson now<<1|1
#define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
const LL mod=1000000009;
int n,m;
LL fib[N<<1],sum[N<<1];
struct node
{
LL f1,f2,sum;
int l,r,len;
}t[N<<2];
void build(int l,int r,int now)
{
t[now].l=l;
t[now].r=r;
t[now].len=r-l+1;
if(l==r) return ;
int mid=(l+r)>>1;
if(l<=mid) build(l,mid,lson);
if(r>mid) build(mid+1,r,rson);
}
void mark(int now,LL f1,LL f2)
{
(t[now].f1+=f1)%=mod;
(t[now].f2+=f2)%=mod;
(t[now].sum+=f1*fib[t[now].len]%mod+f2*fib[t[now].len+1]%mod-f2+mod)%=mod;
}
void pushup(int now)
{
t[now].sum=(t[lson].sum+t[rson].sum)%mod;
}
void pushdown(int now)
{
if(t[now].f1==0&&t[now].f2==0) return;
int mid=(t[now].l+t[now].r)>>1;
mark(lson,t[now].f1,t[now].f2);
if(t[now].r>mid)
mark(rson,t[now].f1*fib[t[lson].len-1]%mod+t[now].f2*fib[t[lson].len]%mod,t[now].f1*fib[t[lson].len]%mod+t[now].f2*fib[t[lson].len+1]%mod);
t[now].f1=t[now].f2=0;
}
void update(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
mark(now,fib[l-L+1],fib[l-L+2]);
return;
}
pushdown(now);
int mid=(l+r)>>1;
if(L<=mid) update(l,mid,lson,L,R);
if(R>mid) update(mid+1,r,rson,L,R);
pushup(now);
}
LL query(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
return t[now].sum;
}
pushdown(now);
int mid=(l+r)>>1;
LL re=0ll;
if(L<=mid) re+=query(l,mid,lson,L,R);
if(R>mid) re+=query(mid+1,r,rson,L,R);
return re%mod;
}
int main()
{
// setIO("input");
int i,j;
scanf("%d%d",&n,&m);
fib[1]=fib[2]=1;
for(i=3;i<N;++i) fib[i]=(fib[i-1]+fib[i-2])%mod;
for(i=1;i<=n;++i) scanf("%lld",&sum[i]), (sum[i]+=sum[i-1])%=mod;
build(1,n,1);
for(i=1;i<=m;++i)
{
int opt,l,r;
scanf("%d%d%d",&opt,&l,&r);
if(opt==1) update(1,n,1,l,r);
else printf("%lld\n",(query(1,n,1,l,r)+sum[r]-sum[l-1]+mod*2)%mod);
}
return 0;
}

  

CF446C DZY Loves Fibonacci Numbers 线段树 + 数学的更多相关文章

  1. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  2. codeforces 446C DZY Loves Fibonacci Numbers 线段树

    假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. ...

  3. Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]

    洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...

  4. Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

    第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...

  5. 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers

    我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...

  6. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  7. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  8. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  9. Codeforces 446C —— DZY Loves Fibonacci Numbers(线段树)

    题目:DZY Loves Fibonacci Numbers 题意比較简单,不解释了. 尽管官方的题解也是用线段树,但还利用了二次剩余. 可是我没有想到二次剩余,然后写了个感觉非常复杂度的线段树,还是 ...

随机推荐

  1. IP核——PLL

    一.Quartus II创建PLL 1.打开Quartus ii,点击Tools---MegaWizard Plug-In Manager 2.弹出创建页面,选择Creat a new custom ...

  2. PKUSC2019题解

    $D1T1$:$n$个村庄,第$i$个村庄的人要去第$p_i$个村庄(保证$p_i$为排列),每次可以将相邻两个村庄的人位置交换直到所有人都到达目的地.再给定一个长为$n-1$的排列$a$,表示第$i ...

  3. 二分法在JavaScript中的应用实例

    前言:原来一直对算法和数据结构望而却步,总觉得前端可能对这块要求不用那么高,但是随着开发经验的增长以及阅历的提升,发现算法和数据结构还是相当重要的,在一些复杂功能的研发中都可以看得到它们的身影.要想提 ...

  4. Java线程之间通讯(三)

    使用wait和notify方法实现了线程间的通讯,都是Object 类的方法,java所有的对象都提供了这两个方法 1.wait和notify必须配合synchronized使用 2.wait方法释放 ...

  5. Bean管理学习笔记

    1.BeanFactory 介绍 1.1 首先什么是Bean? 1.Bean在Spring技术中是基于组件 2.他是Spring容器管理的最基本最常见的单元.在spring的应用场合中,bean可以是 ...

  6. UML系列——OO Unit4分析和学期总结

    一.本单元的架构设计 1.类图 第一次 第二次 2.关键方法和架构简述 总体而言是读取图的时候就完成大部分计算(完成缓存),调用查询方法时只是展示计算的结果,少部分直接计算.主要是设计了各种自己定义的 ...

  7. Fortify漏洞之 Log Forging(日志伪造)

    继续对Fortify的漏洞进行总结,本篇主要针对 Log Forging(日志伪造)的漏洞进行总结,如下: 1.1.产生原因: 在以下情况下会发生 Log Forging 的漏洞: 1. 数据从一个不 ...

  8. thinkphp5中使用phpmailer实现发送邮件功能

    一.开启SMTP服务(使用php发送邮件需要用到SMTP服务,这里以163邮箱的SMTP服务为例). 1.登录163邮箱,在首页上找到“设置”. 2.选择开启的服务,一般都全选,POP3/SMTP/I ...

  9. 一文看懂Java Worker 设计模式

    Worker模式 想解决的问题 异步执行一些任务,有返回或无返回结果 使用动机 有些时候想执行一些异步任务,如异步网络通信.daemon任务,但又不想去管理这任务的生命周.这个时候可以使用Worker ...

  10. GCC 编译流程简介

    GCC-GCC编译流程 序言 对于大多数程序员而言,大家都知道gcc是什么,但是如果不接触到linux平台下的开发,鲜有人真正了解gcc的编译流程,因为windows+IDE的开发模式简直是一条龙全套 ...