CF446C DZY Loves Fibonacci Numbers 线段树 + 数学
有两个性质需要知道:
$1.$ 对于任意的 $f[i]=f[i-1]+f[i-2]$ 的数列,都有 $f[i]=fib[i-2]\times f[1]+fib[i-1]\times f[2]$
其中 $fib[i]$ 为第 $i$ 项斐波那契数列.
$2$. 对于任意满足上述条件的数列,都有 $\sum_{i=1}^{n}f[i]=f[n+2]-f[2]$
$3.$ 任意两断满足上述条件的数列每一项依次叠加,依然满足 $g[i]=g[i-1]+g[i-2]$,且上述两个性质都满足.
$4.$ 任何一段斐波那契数列也满足上述所有性质.
有了上述预备知识后,再考虑这道题:
我们用线段树来维护区间和,线段树上每个节点维护 $3$ 个信息,为 $sum,f1,f2$
即节点所维护的区间和,以及该节点及线段树中区间要加上一个前两项为 $f1,f2$ 的上述递推数列.
那么,我们只需考虑如何下传标记,如何查询即可.
假设当前节点已经有了 $f1,f2$,那么将标记下传给左子树是轻松的:直接下传即可,区间和的贡献可按照上述公式 $O(1)$ 求出.
而如果要下传给右儿子的话就不能直接传了,因为右儿子区间开头的两项并不是 $f1,f2$.
而根据上述三条性质,我们知道斐波那契数列的任何一段也是斐波那契数列.
所以,直接算出右儿子的 $f1,f2$ 即 $f1\times fib[mid-l]+f2\times fib[mid-l+1]$ 与 $f1\times fib[mid-l+1]+f2\times fib[mid-l+2]$
然后还知道 $f1,f2$ 都满足叠加性,所以直接叠加到左右儿子的 $f1,f2$ 上即可.
#include <bits/stdc++.h>
#define N 400004
#define LL long long
#define lson now<<1
#define rson now<<1|1
#define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
const LL mod=1000000009;
int n,m;
LL fib[N<<1],sum[N<<1];
struct node
{
LL f1,f2,sum;
int l,r,len;
}t[N<<2];
void build(int l,int r,int now)
{
t[now].l=l;
t[now].r=r;
t[now].len=r-l+1;
if(l==r) return ;
int mid=(l+r)>>1;
if(l<=mid) build(l,mid,lson);
if(r>mid) build(mid+1,r,rson);
}
void mark(int now,LL f1,LL f2)
{
(t[now].f1+=f1)%=mod;
(t[now].f2+=f2)%=mod;
(t[now].sum+=f1*fib[t[now].len]%mod+f2*fib[t[now].len+1]%mod-f2+mod)%=mod;
}
void pushup(int now)
{
t[now].sum=(t[lson].sum+t[rson].sum)%mod;
}
void pushdown(int now)
{
if(t[now].f1==0&&t[now].f2==0) return;
int mid=(t[now].l+t[now].r)>>1;
mark(lson,t[now].f1,t[now].f2);
if(t[now].r>mid)
mark(rson,t[now].f1*fib[t[lson].len-1]%mod+t[now].f2*fib[t[lson].len]%mod,t[now].f1*fib[t[lson].len]%mod+t[now].f2*fib[t[lson].len+1]%mod);
t[now].f1=t[now].f2=0;
}
void update(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
mark(now,fib[l-L+1],fib[l-L+2]);
return;
}
pushdown(now);
int mid=(l+r)>>1;
if(L<=mid) update(l,mid,lson,L,R);
if(R>mid) update(mid+1,r,rson,L,R);
pushup(now);
}
LL query(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
return t[now].sum;
}
pushdown(now);
int mid=(l+r)>>1;
LL re=0ll;
if(L<=mid) re+=query(l,mid,lson,L,R);
if(R>mid) re+=query(mid+1,r,rson,L,R);
return re%mod;
}
int main()
{
// setIO("input");
int i,j;
scanf("%d%d",&n,&m);
fib[1]=fib[2]=1;
for(i=3;i<N;++i) fib[i]=(fib[i-1]+fib[i-2])%mod;
for(i=1;i<=n;++i) scanf("%lld",&sum[i]), (sum[i]+=sum[i-1])%=mod;
build(1,n,1);
for(i=1;i<=m;++i)
{
int opt,l,r;
scanf("%d%d%d",&opt,&l,&r);
if(opt==1) update(1,n,1,l,r);
else printf("%lld\n",(query(1,n,1,l,r)+sum[r]-sum[l-1]+mod*2)%mod);
}
return 0;
}
CF446C DZY Loves Fibonacci Numbers 线段树 + 数学的更多相关文章
- ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)
Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...
- codeforces 446C DZY Loves Fibonacci Numbers 线段树
假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. ...
- Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]
洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...
- Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)
第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...
- 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers
我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...
- cf446C DZY Loves Fibonacci Numbers
C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...
- codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...
- Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列
C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...
- Codeforces 446C —— DZY Loves Fibonacci Numbers(线段树)
题目:DZY Loves Fibonacci Numbers 题意比較简单,不解释了. 尽管官方的题解也是用线段树,但还利用了二次剩余. 可是我没有想到二次剩余,然后写了个感觉非常复杂度的线段树,还是 ...
随机推荐
- macbook下使用pycharm2019版本配置远程连接服务器
pycharm提供了很方便的与服务器同步代码,并执行的插件.我在配置windows版的pycharm时配置成功,在挪用到mac上则遇到了些许问题,终于是解决了,在此记录配置的过程 目的:pycharm ...
- SAS学习笔记62 通过压缩变量长度来实现数据集压缩
有时候从其他数据库过来的字符型变量Length很长,导致数据集文件很大,可以通过压缩变量长度来实现数据集压缩 具体思路: LENGTH语句设置所有变量真实长度 SET数据集的时候对原有变量进行RENA ...
- Elasticsearch-6.7.0系列(七)SpringCloud连接ES集群,使用ES用户名密码
pom.xml代码: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://ww ...
- linux route详细解读
route命令用于显示和操作IP路由表.要实现两个不同的子网之间的通信,需要一台连接两个网络的路由器,或者同时位于两个网络的网关来实现.在Linux系统中,设置路由通常是 为了解决以下问题:该Linu ...
- sql 分组后重复数据取时间最新的一条记录
1.取时间最新的记录 不分组有重复(多条CreateTime一样的都是最新记录) select * from test t where pid in ( select PId from Test t ...
- RabbitMQ实战
RabbitMQ消息队列 一.Hello World 1.amqp-client客户端依赖 2.Rabbitmq类与方法 二.交换机类型 Exchange Type 1.消息轮询分发(Round Ro ...
- Vue使用QRCode.js生成二维码
1.安装qrcode npm install qrcode 2.组件中引入qrcode import QRCode from 'qrcode' 3.html代码 <div><span ...
- Map转url ,url转Map工具类
/** * 将url参数转换成map * @param param aa=11&bb=22&cc=33 * @return */ public static Map<String ...
- 将Centos7的yum配置为阿里云的镜像(完美解决yum下载太慢的问题)
2017-02-17 16:02:30 张老湿 阅读数 13768 http://mirrors.aliyun.com/help/centos?spm=5176.bbsr150321.0.0. ...
- Python学习日记(二十三) 类命名空间和组合
类命名空间 在一个类中它的函数(方法)属于动态属性,直接定义的变量属于静态属性 首先先定义一个类,并在这个类里面加入静态变量.属性等然后将一个对象实例化 class Fighter: #定义一个战机的 ...