[LeetCode] 218. The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).
The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi]
, where Li
and Ri
are the x coordinates of the left and right edge of the ith building, respectively, and Hi
is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX
, 0 < Hi ≤ INT_MAX
, and Ri - Li > 0
. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.
For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ]
.
The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ]
that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.
For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ]
.
Notes:
- The number of buildings in any input list is guaranteed to be in the range
[0, 10000]
. - The input list is already sorted in ascending order by the left x position
Li
. - The output list must be sorted by the x position.
- There must be no consecutive horizontal lines of equal height in the output skyline. For instance,
[...[2 3], [4 5], [7 5], [11 5], [12 7]...]
is not acceptable; the three lines of height 5 should be merged into one in the final output as such:[...[2 3], [4 5], [12 7], ...]
Credits:
Special thanks to @stellari for adding this problem, creating these two awesome images and all test cases.
如果按照矩形来处理将会非常麻烦,可以把这些矩形拆成两个点,一个左上顶点,一个右上顶点,这个题相当于处理2*n个边的问题,每一个边有一个x-axis和一个height,把所给的triplet转换成[x-axis, height],对这些顶点按x-axis排序。然后开始遍历这些点,用一个最大堆来记录高度,对于左顶点,将height加入堆中。对于右顶点,从堆中移出height,同时也意味这这个矩形的结束。堆顶是所有顶点中最高的点,是当前图形的最高位置。只要这个点没被移出堆,说明这个最高的矩形还没结束。如果堆顶高度值出现了变化,说明出现了拐点,记录相应位置到结果中。
具体代码中,为了在排序后的顶点列表中区分左右顶点,同一个图形的左右顶点height一个是正数值,一个是负数值。
(1) 自建一个名为Height的数据结构,保存一个building的index和height。约定,当height为负数时表示这个高度为height的building起始于index;height为正时表示这个高度为height的building终止于index。
(2) 对building数组进行处理,每一行[ Li, Ri, Hi ],根据Height的定义,转换为两个Height的对象,即,Height(Li, -Hi) 和 Height(Ri, Hi)。 将这两个对象存入heights这个List中。
(3) 写个Comparator对heights进行升序排序,首先按照index的大小排序,若index相等,则按height大小排序,以保证一栋建筑物的起始节点一定在终止节点之前。
(4) 将heights转换为结果。使用PriorityQueue对高度值进行暂存。遍历heights,遇到高度为负值的对象时,表示建筑物的起始节点,此时应将这个高度加PriorityQueue。遇到高度为正值的对象时,表示建筑物的终止节点,此时应将这个高度从PriorityQueue中除去。且在遍历的过程中检查,当前的PriorityQueue的peek()是否与上一个iteration的peek()值(prev)相同,若否,说明出现了拐点,则应在结果中加入[当前对象的index, 当前PriorityQueue的peek()],并更新prev的值。
Java:
class Edge {
int x;
int height;
boolean isStart; public Edge(int x, int height, boolean isStart) {
this.x = x;
this.height = height;
this.isStart = isStart;
}
} public List<int[]> getSkyline(int[][] buildings) {
List<int[]> result = new ArrayList<int[]>(); if (buildings == null || buildings.length == 0
|| buildings[0].length == 0) {
return result;
} List<Edge> edges = new ArrayList<Edge>(); // add all left/right edges
for (int[] building : buildings) {
Edge startEdge = new Edge(building[0], building[2], true);
edges.add(startEdge);
Edge endEdge = new Edge(building[1], building[2], false);
edges.add(endEdge);
} // sort edges
Collections.sort(edges, new Comparator<Edge>() {
public int compare(Edge a, Edge b) {
if (a.x != b.x)
return Integer.compare(a.x, b.x); if (a.isStart && b.isStart) {
return Integer.compare(b.height, a.height);
} if (!a.isStart && !b.isStart) {
return Integer.compare(a.height, b.height);
} return a.isStart ? -1 : 1;
}
}); // process edges
PriorityQueue<Integer> heightHeap = new PriorityQueue<Integer>(10, Collections.reverseOrder()); for (Edge edge : edges) {
if (edge.isStart) {
if (heightHeap.isEmpty() || edge.height > heightHeap.peek()) {
result.add(new int[] { edge.x, edge.height });
}
heightHeap.add(edge.height);
} else {
heightHeap.remove(edge.height); if(heightHeap.isEmpty()){
result.add(new int[] {edge.x, 0});
}else if(edge.height > heightHeap.peek()){
result.add(new int[]{edge.x, heightHeap.peek()});
}
}
} return result;
}
Java:
public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
List<int[]> result = new ArrayList<int[]>();
if (buildings == null || buildings.length == 0 || buildings[0].length == 0) {
return result;
} List<Height> heights = new ArrayList<Height>();
for (int[] building : buildings) {
heights.add(new Height(building[0], -building[2]));
heights.add(new Height(building[1], building[2]));
}
Collections.sort(heights, new Comparator<Height>() {
@Override
public int compare(Height h1, Height h2) {
return h1.index != h2.index ? h1.index - h2.index : h1.height - h2.height;
}
}); PriorityQueue<Integer> pq = new PriorityQueue<Integer>(1000, Collections.reverseOrder());
pq.offer(0);
int prev = 0;
for (Height h : heights) {
if (h.height < 0) {
pq.offer(-h.height);
} else {
pq.remove(h.height);
}
int cur = pq.peek();
if (cur != prev) {
result.add(new int[]{h.index, cur});
prev = cur;
}
} return result;
} class Height {
int index;
int height;
Height(int index, int height) {
this.index = index;
this.height = height;
}
}
}
Python:
class Solution(object):
def getSkyline(self, buildings):
n = len(buildings)
points = sorted([(buildings[i][0], buildings[i][2], 's') for i in range(n)] +
[(buildings[i][1], buildings[i][2], 'e') for i in range(n)])
print points
result, maxHeap = [], []
for p in points:
pre_height = - maxHeap[0] if maxHeap else 0
if p[2] == 's':
heappush(maxHeap, -p[1])
else:
heappop(maxHeap)
cur_height = - maxHeap[0] if maxHeap else 0 if p[2] == 's' and p[1] > pre_height:
result.append([p[0], p[1]])
elif p[2] == 'e' and p[1] > cur_height:
result.append([p[0], cur_height]) return result
Python:
from heapq import heappush, heappop
import functools class Edge(object):
def __init__(self, x, height, is_start):
self.x = x
self.height = height
self.is_start = is_start def __repr__(self):
return repr((self.x, self.height, self.is_start)) class Solution1(object):
def compare(self, edge1, edge2):
if edge1.x != edge2.x:
return -1 if edge1.x < edge2.x else 1 if ((edge1.is_start and edge2.is_start) or
(not edge1.is_start and not edge2.is_start)):
return -1 if edge1.height < edge2.height else 1 return -1 if edge1.is_start else 1 def getSkyline(self, buildings):
edges = []
for building in buildings:
start_edge = Edge(building[0], building[2], True)
end_edge = Edge(building[1], building[2], False)
edges.extend((start_edge, end_edge))
sorted_edges = sorted(edges, key=functools.cmp_to_key(self.compare))
print sorted_edges
maxHeap, result = [], []
for edge in sorted_edges:
if edge.is_start:
if not maxHeap or edge.height > - maxHeap[0]:
result.append((edge.x, edge.height))
heappush(maxHeap, - edge.height)
else:
heappop(maxHeap)
if not maxHeap:
result.append((edge.x, 0))
elif edge.height > - maxHeap[0]:
result.append((edge.x, - maxHeap[0])) return result
Python:
class MaxHeap:
def __init__(self, buildings):
self.buildings = buildings
self.size = 0
self.heap = [None] * (2 * len(buildings) + 1)
self.lineMap = dict()
def maxLine(self):
return self.heap[1]
def insert(self, lineId):
self.size += 1
self.heap[self.size] = lineId
self.lineMap[lineId] = self.size
self.siftUp(self.size)
def delete(self, lineId):
heapIdx = self.lineMap[lineId]
self.heap[heapIdx] = self.heap[self.size]
self.lineMap[self.heap[self.size]] = heapIdx
self.heap[self.size] = None
del self.lineMap[lineId]
self.size -= 1
self.siftDown(heapIdx)
def siftUp(self, idx):
while idx > 1 and self.cmp(idx / 2, idx) < 0:
self.swap(idx / 2, idx)
idx /= 2
def siftDown(self, idx):
while idx * 2 <= self.size:
nidx = idx * 2
if idx * 2 + 1 <= self.size and self.cmp(idx * 2 + 1, idx * 2) > 0:
nidx = idx * 2 + 1
if self.cmp(nidx, idx) > 0:
self.swap(nidx, idx)
idx = nidx
else:
break
def swap(self, a, b):
la, lb = self.heap[a], self.heap[b]
self.lineMap[la], self.lineMap[lb] = self.lineMap[lb], self.lineMap[la]
self.heap[a], self.heap[b] = lb, la
def cmp(self, a, b):
return self.buildings[self.heap[a]][2] - self.buildings[self.heap[b]][2] class Solution:
def getSkyline(self, buildings):
size = len(buildings)
points = sorted([(buildings[x][0], x, 's') for x in range(size)] +
[(buildings[x][1], x, 'e') for x in range(size)])
maxHeap = MaxHeap(buildings)
ans = []
for p in points:
if p[2] == 's':
maxHeap.insert(p[1])
else:
maxHeap.delete(p[1])
maxLine = maxHeap.maxLine()
height = buildings[maxLine][2] if maxLine is not None else 0
if len(ans) == 0 or ans[-1][0] != p[0]:
ans.append([p[0], height])
elif p[2] == 's':
ans[-1][1] = max(ans[-1][1], height)
else:
ans[-1][1] = min(ans[-1][1], height)
if len(ans) > 1 and ans[-1][1] == ans[-2][1]:
ans.pop()
return ans
C++: heap
class Solution {
private:
enum NODE_TYPE {LEFT, RIGHT};
struct node {
int x, y;
NODE_TYPE type;
node(int _x, int _y, NODE_TYPE _type) : x(_x), y(_y), type(_type) {}
}; public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<node> height;
for (auto &b : buildings) {
height.push_back(node(b[0], b[2], LEFT));
height.push_back(node(b[1], b[2], RIGHT));
}
sort(height.begin(), height.end(), [](const node &a, const node &b) {
if (a.x != b.x) return a.x < b.x;
else if (a.type == LEFT && b.type == LEFT) return a.y > b.y;
else if (a.type == RIGHT && b.type == RIGHT) return a.y < b.y;
else return a.type == LEFT;
}); priority_queue<int> heap;
unordered_map<int, int> mp;
heap.push(0);
vector<pair<int, int>> res;
int pre = 0, cur = 0;
for (auto &h : height) {
if (h.type == LEFT) {
heap.push(h.y);
} else {
++mp[h.y];
while (!heap.empty() && mp[heap.top()] > 0) {
--mp[heap.top()];
heap.pop();
}
}
cur = heap.top();
if (cur != pre) {
res.push_back({h.x, cur});
pre = cur;
}
}
return res;
}
};
C++: Multiset
class Solution {
public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<pair<int, int>> h, res;
multiset<int> m;
int pre = 0, cur = 0;
for (auto &a : buildings) {
h.push_back({a[0], -a[2]});
h.push_back({a[1], a[2]});
}
sort(h.begin(), h.end());
m.insert(0);
for (auto &a : h) {
if (a.second < 0) m.insert(-a.second);
else m.erase(m.find(a.second));
cur = *m.rbegin();
if (cur != pre) {
res.push_back({a.first, cur});
pre = cur;
}
}
return res;
}
};
类似题目:
[LintCode] 131. Building Outline
All LeetCode Questions List 题目汇总
[LeetCode] 218. The Skyline Problem 天际线问题的更多相关文章
- LeetCode 218. The Skyline Problem 天际线问题(C++/Java)
题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...
- [LeetCode] 281. The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- [LeetCode#218] The Skyline Problem
Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...
- Java for LeetCode 218 The Skyline Problem【HARD】
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- 218. The Skyline Problem (LeetCode)
天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...
- 218. The Skyline Problem
题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...
- 218. The Skyline Problem *HARD* -- 矩形重叠
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- [LeetCode] The Skyline Problem
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
随机推荐
- php中array的常用操作示码
融会了,也就熟悉了. 这事得多练,多改. <?php $empty1 = []; $empty2 = array(); $names = ['Harry', 'Ron', 'Hermione'] ...
- docker postgresql 数据库
1. 使用docker 镜像 获取镜像:docker pull postgres:9.4 启动: docker run --name postgres1 -e POSTGRES_PASSWORD=pa ...
- 七牛云——qshell一个神奇的工具
前言 qshell是利用七牛文档上公开的API实现的一个方便开发者测试和使用七牛API服务的命令行工具.该工具设计和开发的主要目的就是帮助开发者快速解决问题.目前该工具融合了七牛存储,CDN,以及其他 ...
- xshell连接不上阿里云服务器Could not connect to 'ip' (port 22): Connection failed.解决过程
记一次xshell阿里云服务器突然连接不上的解决办法: 1, 确认阿里云服务器安全组出入都有22,百度出来都说的这个和ip拦截设置,以防万一都设置了:但楼主设置后,还是连不上服务器: 只好下一步 2, ...
- Bagging and Random Forest
Bagging和随机森林RF. 随机森林是最受欢迎和最强大的机器学习算法之一.它是一种称为Bootstrap Aggregation或bagging的集成机器学习算法. bootstrap是一种强大的 ...
- MySQL 中间件 - DBLE 简单使用
DBLE 是企业级开源分布式中间件,江湖人送外号 “MyCat Plus”:以其简单稳定,持续维护,良好的社区环境和广大的群众基础得到了社区的大力支持: 环境准备 DBLE项目资料 DBLE官方网 ...
- PDE工具箱的简单使用
转载自Here matlab的PDE工具箱的简单使用 问题选择 边界条件选择 菜单按钮和简单使用 命令行输入pdetool,打开GUI编辑界面如下: 注意到工具栏上,就是我们要用到的,从左到右依次使用 ...
- (转)React事件处理函数必须使用bind(this)的原因
1.JavaScript自身特性说明如果传递一个函数名给一个变量,之后通过函数名()的方式进行调用,在方法内部如果使用this则this的指向会丢失.示例代码:首先我们创建test对象并直接调用方法 ...
- Mac下删除自己安装的Python
删除Python框架sudo rm -rf /Library/Frameworks/Python.framework/Versions/x.x 删除Python程序sudo rm -rf “/Appl ...
- PKUWC2019 Round 2 没去祭
因为今年有两场 PKUWC,所以叫 PKUWC2019 Round 2. 因为一些沙雕原因,今年去不了了. Day 0 一如既往,没有集训就去上数学课,今天讲几何变换,一如既往的只会说"少女 ...