题目描述:

Kyoya and Colored Balls

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color i before drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

Input

The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

Then, k lines will follow. The i-th line will contain \(c_i\), the number of balls of the i-th color (1 ≤ \(c_i\) ≤ 1000).

The total number of balls doesn't exceed 1000.

Output

A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

Examples

Input

Copy

3
2
2
1

Output

Copy

3

Input

Copy

4
1
2
3
4

Output

Copy

1680

Note

In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

1 2 1 2 3
1 1 2 2 3
2 1 1 2 3

思路:

题目是说给一组有颜色的球,从袋子中去出球要求第i种颜色的求必须在第i+1种颜色的求取完之前取完,问这种取球方法有多少种。大致可以看出这是一道排列组合题,而且方案会很多(因为要取模)。一开始想的是整体怎么放,就是说我一下子就要先扣下每种颜色的一个球,固定住他们的顺序,然后在看其他的球的放法。但情况实际上十分复杂。然后想的是这是一种有重复元素的定序排列问题,但直接套公式好像又不可行。应该要分步考虑而不是全局考虑。考虑最后一个位子,肯定放最后一种颜色的球,之前的位置有\(sum-1\)个,剩余的最后颜色球放在这些位子上有\(C_{sum-1}^{a[last]-1}\)种放法(同种颜色的球无差别)。然后考虑倒数第二种颜色的最后一个球,这是忽略掉前面放好的球,只看空位,最后一个空位放一个球,其它空位放剩余倒数第二种颜色的球,有\(C_{sum-a[last]-1}^{a[last-1]-1}\)种放法。以此类推直到第一种颜色的球。

注意在实现组合数时用到了费马小定理求逆元来算组合数取模。

代码

#include <iostream>
#define max_n 1005
#define mod 1000000007
using namespace std;
int n;
long long a[max_n];
long long ans = 1;
long long sum = 0;
long long q_mod(long long a,long long b)
{
long long res = 1;
while(b)
{
if(b&1)
{
res = ((res%mod)*a)%mod;
}
a = (a*a)%mod;
b >>= 1;
}
return res;
}
long long fac[max_n];
void ini()
{
fac[0] = 1;
for(int i = 1;i<max_n;i++)
{
fac[i] = ((fac[i-1]%mod)*i)%mod;
}
}
long long inv(long long a)
{
return q_mod(a,mod-2);
}
long long comb(int n,int k)
{
if(k>n) return 0;
return (fac[n]*inv(fac[k])%mod*inv(fac[n-k])%mod)%mod;
}
int main()
{
ini();
//cout << comb(3,1) << endl;
cin >> n;
for(int i = 0;i<n;i++)
{
cin >> a[i];
sum += a[i];
}
for(int i = n-1;i>=0;i--)
{
ans = (ans%mod*(comb(sum-1,a[i]-1)%mod))%mod;
sum -= a[i];
}
cout << ans << endl;
return 0;
}

参考文章:

hellohelloC,CodeForces 553A Kyoya and Colored Balls (排列组合),https://blog.csdn.net/hellohelloc/article/details/47811913

Codeforces A. Kyoya and Colored Balls(分步组合)的更多相关文章

  1. Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合

    C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  2. codeforces 553A . Kyoya and Colored Balls 组合数学

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...

  3. C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))

    C. Kyoya and Colored Balls Kyoya Ootori has a bag with n colored balls that are colored with k diffe ...

  4. codeforces 553A A. Kyoya and Colored Balls(组合数学+dp)

    题目链接: A. Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes i ...

  5. A. Kyoya and Colored Balls_排列组合,组合数

    Codeforces Round #309 (Div. 1) A. Kyoya and Colored Balls time limit per test 2 seconds memory limit ...

  6. CF-weekly4 F. Kyoya and Colored Balls

    https://codeforces.com/gym/253910/problem/F F. Kyoya and Colored Balls time limit per test 2 seconds ...

  7. Codeforces554 C Kyoya and Colored Balls

    C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...

  8. Kyoya and Colored Balls(组合数)

    Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. 554C - Kyoya and Colored Balls

    554C - Kyoya and Colored Balls 思路:组合数,用乘法逆元求. 代码: #include<bits/stdc++.h> using namespace std; ...

随机推荐

  1. Hotspot的Metaspace

    Meta Space是JDK1.8引入的,在JDK1.8使用的是方法区,永久代(Permnament Generation).元空间存储的是元信息,使用的是操作系统的本地内存(Metaspace与Pe ...

  2. 图、流程图、ER图怎么画及常见画图工具(流程图文章汇总)

    流程图基本符号 首先要记住图中1.2.3.4.6这几种符号. 图片摘自网络 流程图基本概念及入门 简易流程图 流程图简介(基本符号与绘制工具) 你可能学了假流程图,三步教会你绘制大厂流程图 使用流程图 ...

  3. top命令输出解释以及load average 详解及排查思路

    原地址: https://blog.csdn.net/zhangchenglikecc/article/details/52103737 1.top输出以及load average 详解 昨天nagi ...

  4. 【06月04日】A股滚动市盈率PE历史新低排名

    2010年01月01日 到 2019年06月04日 之间,滚动市盈率历史新低排名. 上市三年以上的公司,2019年06月04日市盈率在300以下的公司. 1 - 阳光照明(SH600261) - 历史 ...

  5. Learn About Git Bash

    git是用来做版本控制的,在本节博客中,主要介绍git的下载,以及简单的配置 Version control is a system that records changes to a file or ...

  6. hanlp进行命名实体识别

    需要安装jpype先,这个是python调用java库的桥梁. # -*- coding: utf-8 -*- """ Created on Thu May 10 09: ...

  7. Rancher 构建 CI/CD 自动化流程 - 动态配置 Jenkins-slave(二)

    一.说明 1.1 说明 前面介绍采用 Jenkinsfile + KubernetesPod.yaml 方式进行部署项目(Rancher 构建 CI/CD 自动化流程 - 动态配置 Jenkins-s ...

  8. mPython编程环境:Mu

    所谓编程环境,IDE ,就是这个软件里,用mPython写程序,新建文件,编辑 ,运行 ,调试 ,Mu还有一个重要功能烧录(flash),就是把我们的程序编译之后写到芯片中去. Mu下载,安装都很简单 ...

  9. seleium 之 EC 的用法

    场景 Expected Conditions的使用场景有2种 直接在断言中使用 与WebDriverWait配合使用,动态等待页面上元素出现或者消失 方法注释 先翻译一下这些方法的用法 title_i ...

  10. pytest_全局变量的使用

    这里重新阐述下PageObject设计模式: PageObject设计模式是selenium自动化最成熟,最受欢迎的一种模式,这里用pytest同样适用 这里直接提供代码: 全局变量 conftest ...