http://blog.csdn.net/pipisorry/article/details/44119187

机器学习Machine Learning - Andrew NG courses学习笔记

Machine Learning System Design机器学习系统设计

Prioritizing What to Work On优先考虑做什么

the first decision we must make is how do we want to represent x, that is the features of the email.

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:feature的选择

1. chose a hundred words to use for this representation manually.

2. in practice,look through a training set, and in the training set depict(描写叙述) the most frequently occurring n words where n is usually between ten thousand and fifty thousand, and use those as your features.

用数据预处理减少错误率

Note:

1. getting lots of data will often help, but not all the time.

2. when spammers send email,very often they will try to obscure(隐藏) the origins of the email, and maybe use fake email headers.Or send email through very unusual sets of computer service.Through very unusual routes, in order to get the spam to you.

3. the spam classifier might not equate "w4tches" as "watches," and so it may have a harder time realizing that something is spam with these deliberate misspellings.And this is why spammers do it.

Error Analysis 错误分析

{help give you a way to more systematically make some of these decisions of different ideas on how to improve the algorithm.quick way to let you identify some errors and quickly identify what are the hard examples so that you can focus your efforts on those.}

设计机器学习系统的建议步骤

Note:

error analysis on the emails would inspire you to design new features.Or they'll tell you whether the current things or current shortcomings of the system and give you the inspiration you need to come up with improvements to it.

错误分析的一个样例

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:

1. 计算准确率Accuracy = (true positives + true negatives) / (total examples)推断

2. by counting up the number of emails in these different categories that you might discover, for example, that the algorithm is doing really particularly poorly on emails trying to steal passwords, and that may suggest that it might be worth your effort
to look more carefully at that type of email, and see if you can come up with better features to categorize them correctly.

3. a strong sign that it might actually be worth your while to spend the time to develop more sophisticated features based on the punctuation.

numerical evaluation of your learning algorithm


watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

note:

1. using a stemming software can help but it can hurt.

2. We'll see later, examples where coming up with this, sort of, single row number evaluation metric may need a little bit more work.then let you make these decisions much more quickly.

Error Metrics for Skewed Classes有偏类的错误度量(准确度/召回率)

skewed class: in this case, the number of positive examples is much,much smaller than the number of negative examples.

Note:

1. So a non learning algorithm just predicting y equals 0 all the time is even better than the 1% error.

2. By going from 99.2% accuracy to 99.5% accuracy.we just need a good change to the algorithm or not?

it becomes much harder to use just classification accuracy, because you can get very high classification accuracies or very low errors, and it's not always
clear if doing so is really improving the quality of your classifier because predicting y equals 0 all the time doesn't seem like a particularly good classifier.

faced with such a skewed classes therefore come up with a different error metric called precision recall.

Precision/Recall准确度/召回率

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:

1. a learning algorithm that predicts y equals zero all the time,then recall equal to zero,recognize that just isn't a very good classifier.

2. defined setting y equals 1, rather than y equals 0, to be sort of that the presence of that rare class that we're trying to detect.



总结 : precision recall is often a much better way to evaluate our learning algorithms,than looking at classification error or classification accuracy, when the classes are
very skewed.

[1.6 误差类型Types of errors-常见的误差度量方法]

Trading Off Precision and Recall权衡精度和召回率

Note:

1. tell someone that we think they have cancer only if they're very confident.that instead of setting the threshold at 0.5.

2. the position recall curve can look like many different shapes, depending on the details of the classifier.

3. 推断threshole变化给P\R带来的影响: Lowering the threshold means more y = 1 predictions, 而recall的分母是不变的!

先看recall变大还是变小,再推断precision怎么变化

4. 准确率Accuracy = (true positives + true negatives) / (total examples)

A way to choose this threshold automatically?

How do we decide which of these algorithms is best?

A way of combining precision recall called the f score.

Data For Machine Learning数据影响机器学习算法的表现

{the issue of how much data to train on}

Note:

1. 而不是include high order polynomial features of x.

2. hopefully even though we have a lot of parameters but if the training set is sort of even much larger than the number of parameters then hopefully these albums will be unlikely to overfit.

3. Finally putting these two together that the train set error is small and the test set error is close to the training error what this two together imply is that hopefully the test set error will also be small.

4. A sufficiently large training set will not be overfit



总结:

if you have a lot of data and you train a learning algorithm with lot of parameters, that might be a good way to give a high performance learning algorithm.

Review:

from:http://blog.csdn.net/pipisorry/article/details/44245513

版权声明:本文博客原创文章,博客,未经同意,不得转载。

Machine Learning - XI. Machine Learning System Design机器学习系统的设计(Week 6)的更多相关文章

  1. 斯坦福第十一课:机器学习系统的设计(Machine Learning System Design)

    11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频中,我将谈到机器 ...

  2. Ng第十一课:机器学习系统的设计(Machine Learning System Design)

    11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频将谈到机器学习系 ...

  3. 11、 机器学习系统的设计(Machine Learning System Design)

    11.1 首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议. ...

  4. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  6. Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记

    Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...

  7. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

  8. zz 机器学习系统或者SysML&DL笔记

    机器学习系统或者SysML&DL笔记(一)  Oldpan  2019年5月12日  0条评论  971次阅读  1人点赞 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Py ...

  9. 机器学习系统或者SysML&DL笔记(一)

    前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打 ...

随机推荐

  1. k8s with flanneld

    三台机器 kmaster 192.168.1.201 kslave202 192.168.1.202 kslave203 192.168.1.203 安装好k8s 1. 在Node机器上安装flann ...

  2. hello nodejs

    文章1一步:下载.安装文件 打开nodejs官方网站http://www.nodejs.org/download/ .选择须要的版本号.直接打开.默认安装就可以 第二步:编写測试代码: var htt ...

  3. 编写WCF服务时右击配置文件无“Edit WCF Configuration”(编辑 WCF 配置)远程的解决办法

    原文:编写WCF服务时右击配置文件无“Edit WCF Configuration”远程的解决办法 今天在看<WCF揭秘>书中看到作者提出可以在一个WCF Host应用程序的App.Con ...

  4. hdu 1533 Going Home 最小费用流

    构建地图非常easy bfs预处理地图.距离的成本 来源所有m建方,流程1费0 m所有H建方,流程1距离成本 H汇点建设成为各方.流程1费0 #include<cstdio> #inclu ...

  5. OR1200数据Cache介绍

    以下摘录<步骤吓得核心--软-core处理器的室内设计与分析>一本书 上一章剖析了ICache模块. 本章将剖析DCache模块.首先指出DCache模块相比ICache的特别之处.由于这 ...

  6. 数独 (dfs)

    自从2006年3月10日至11日的首届数独世界锦标赛以后,数独这项游戏越来越受到人们的喜爱和重视.据说,在2008北京奥运会上,会将数独列为一个单独的项目进行比赛,冠军将有可能获得的一份巨大的奖品—— ...

  7. oracle_oracle中修改日期的显示格式

    我的现在的日期格式是          ,要改成英文的需要输入一下命令: ALTER SESSION SET NLS_DATE_LANGUAGE=AMERICAN; 修改后变为: 同样也得若是英文要想 ...

  8. 【百度地图API】如何在地图上添加标注?——另有:坐标拾取工具+打车费用接口介绍

    原文:[百度地图API]如何在地图上添加标注?--另有:坐标拾取工具+打车费用接口介绍 摘要: 在这篇文章中,你将学会,如何利用百度地图API进行标注.如何使用API新增的打车费用接口. ------ ...

  9. 如何从 0 开始学 Ruby on Rails

    如何从 0 开始学 Ruby on Rails (漫步版)Ruby 是一门编程语言,Ruby on Rails 是 Ruby 的一个 web 框架,简称 Rails. 有很多人对 Rails 感兴趣, ...

  10. Struts2.0+Spring3+Hibernate3(SSH~Demo)

    Struts2.0+Spring3+Hibernate3(SSH~Demo) 前言:整理一些集成框架,发现网上都是一些半成品,都是共享一部分出来(确实让人很纠结),这是整理了一份SSH的测试案例,完全 ...