http://blog.csdn.net/pipisorry/article/details/44119187

机器学习Machine Learning - Andrew NG courses学习笔记

Machine Learning System Design机器学习系统设计

Prioritizing What to Work On优先考虑做什么

the first decision we must make is how do we want to represent x, that is the features of the email.

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:feature的选择

1. chose a hundred words to use for this representation manually.

2. in practice,look through a training set, and in the training set depict(描写叙述) the most frequently occurring n words where n is usually between ten thousand and fifty thousand, and use those as your features.

用数据预处理减少错误率

Note:

1. getting lots of data will often help, but not all the time.

2. when spammers send email,very often they will try to obscure(隐藏) the origins of the email, and maybe use fake email headers.Or send email through very unusual sets of computer service.Through very unusual routes, in order to get the spam to you.

3. the spam classifier might not equate "w4tches" as "watches," and so it may have a harder time realizing that something is spam with these deliberate misspellings.And this is why spammers do it.

Error Analysis 错误分析

{help give you a way to more systematically make some of these decisions of different ideas on how to improve the algorithm.quick way to let you identify some errors and quickly identify what are the hard examples so that you can focus your efforts on those.}

设计机器学习系统的建议步骤

Note:

error analysis on the emails would inspire you to design new features.Or they'll tell you whether the current things or current shortcomings of the system and give you the inspiration you need to come up with improvements to it.

错误分析的一个样例

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:

1. 计算准确率Accuracy = (true positives + true negatives) / (total examples)推断

2. by counting up the number of emails in these different categories that you might discover, for example, that the algorithm is doing really particularly poorly on emails trying to steal passwords, and that may suggest that it might be worth your effort
to look more carefully at that type of email, and see if you can come up with better features to categorize them correctly.

3. a strong sign that it might actually be worth your while to spend the time to develop more sophisticated features based on the punctuation.

numerical evaluation of your learning algorithm


watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

note:

1. using a stemming software can help but it can hurt.

2. We'll see later, examples where coming up with this, sort of, single row number evaluation metric may need a little bit more work.then let you make these decisions much more quickly.

Error Metrics for Skewed Classes有偏类的错误度量(准确度/召回率)

skewed class: in this case, the number of positive examples is much,much smaller than the number of negative examples.

Note:

1. So a non learning algorithm just predicting y equals 0 all the time is even better than the 1% error.

2. By going from 99.2% accuracy to 99.5% accuracy.we just need a good change to the algorithm or not?

it becomes much harder to use just classification accuracy, because you can get very high classification accuracies or very low errors, and it's not always
clear if doing so is really improving the quality of your classifier because predicting y equals 0 all the time doesn't seem like a particularly good classifier.

faced with such a skewed classes therefore come up with a different error metric called precision recall.

Precision/Recall准确度/召回率

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:

1. a learning algorithm that predicts y equals zero all the time,then recall equal to zero,recognize that just isn't a very good classifier.

2. defined setting y equals 1, rather than y equals 0, to be sort of that the presence of that rare class that we're trying to detect.



总结 : precision recall is often a much better way to evaluate our learning algorithms,than looking at classification error or classification accuracy, when the classes are
very skewed.

[1.6 误差类型Types of errors-常见的误差度量方法]

Trading Off Precision and Recall权衡精度和召回率

Note:

1. tell someone that we think they have cancer only if they're very confident.that instead of setting the threshold at 0.5.

2. the position recall curve can look like many different shapes, depending on the details of the classifier.

3. 推断threshole变化给P\R带来的影响: Lowering the threshold means more y = 1 predictions, 而recall的分母是不变的!

先看recall变大还是变小,再推断precision怎么变化

4. 准确率Accuracy = (true positives + true negatives) / (total examples)

A way to choose this threshold automatically?

How do we decide which of these algorithms is best?

A way of combining precision recall called the f score.

Data For Machine Learning数据影响机器学习算法的表现

{the issue of how much data to train on}

Note:

1. 而不是include high order polynomial features of x.

2. hopefully even though we have a lot of parameters but if the training set is sort of even much larger than the number of parameters then hopefully these albums will be unlikely to overfit.

3. Finally putting these two together that the train set error is small and the test set error is close to the training error what this two together imply is that hopefully the test set error will also be small.

4. A sufficiently large training set will not be overfit



总结:

if you have a lot of data and you train a learning algorithm with lot of parameters, that might be a good way to give a high performance learning algorithm.

Review:

from:http://blog.csdn.net/pipisorry/article/details/44245513

版权声明:本文博客原创文章,博客,未经同意,不得转载。

Machine Learning - XI. Machine Learning System Design机器学习系统的设计(Week 6)的更多相关文章

  1. 斯坦福第十一课:机器学习系统的设计(Machine Learning System Design)

    11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频中,我将谈到机器 ...

  2. Ng第十一课:机器学习系统的设计(Machine Learning System Design)

    11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频将谈到机器学习系 ...

  3. 11、 机器学习系统的设计(Machine Learning System Design)

    11.1 首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议. ...

  4. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  6. Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记

    Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...

  7. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

  8. zz 机器学习系统或者SysML&DL笔记

    机器学习系统或者SysML&DL笔记(一)  Oldpan  2019年5月12日  0条评论  971次阅读  1人点赞 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Py ...

  9. 机器学习系统或者SysML&DL笔记(一)

    前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打 ...

随机推荐

  1. LeetCode :: Insertion Sort List [具体分析]

    Sort a linked list using insertion sort. 仍然是一个很简洁的题目,让我们用插入排序给链表排序:这里说到插入排序.能够来回想一下, 最主要的入门排序算法.就是插入 ...

  2. hdu4758 Walk Through Squares (AC自己主动机+DP)

    Walk Through Squares Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others ...

  3. Session中StateServer的使用方法

    最近项目中用到 Session的StateServer模式,我们知道sessionState有四种模式:off,inProc,StateServer,SqlServer. 而StateServer 是 ...

  4. CentOS7 安装Hadoop集群环境

    先按照上一篇安装与配置好CentOS以及zookeeper http://www.cnblogs.com/dopeter/p/4609276.html 本章介绍在CentOS搭建Hadoop集群环境 ...

  5. SpringMVC使用FileUpload上传文件

    进口FileUpload和common-io的Jar包 注意:1.Struts2其它方法需要使用的:struts2过滤,将改变reqeust类型,由HttpServletRequest成为MultiP ...

  6. 十天学Linux内核之第十天---总结篇(kconfig和Makefile & 讲不出再见)

    原文:十天学Linux内核之第十天---总结篇(kconfig和Makefile & 讲不出再见) 非常开心能够和大家一起分享这些,让我受益匪浅,感激之情也溢于言表,,code monkey的 ...

  7. 添加AD验证(域身份验证)到现有网站

    每个网站几乎都会有用户登录的模块,登录就会涉及到身份验证的过程.通常的做法是在页面上有个登录的Form,然后根据用户名和密码到数据库中去进行验证. 而验证后如何在网站的各个页面维持这种认证过的状态,有 ...

  8. idea_intellij

    近期要研读和调试spark2,用eclispe据说各种问题,so还是切换到  intellij 1:下载 (官网自行下载最新版本) 2: 注册码 intellij idea 2016 activati ...

  9. ASP.NET MVC学习之控制器篇扩展性

    原文:ASP.NET MVC学习之控制器篇扩展性 一.前言 在之前的一篇随笔中已经讲述过控制器,而今天的随笔是作为之前的扩展. 二.正文 1.自定义动作方法 相信大家在开发过程一定会遇到动作方法的重名 ...

  10. Web前端开发实用的Chrome插件

    Web前端开发实用的Chrome插件 越来越多的前端开发人员喜欢在Chrome里开发调试代码,Chrome有许多优秀的插件可以帮助前端开发人员极大的提高工作效率.尤其Chrome本身是可以登录的,登录 ...