Machine Schedule
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17457   Accepted: 7328

Description

As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem.

There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0.

For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y.

Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines.

Input

The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y.

The input will be terminated by a line containing a single zero.

Output

The output should be one integer per line, which means the minimal times of restarting machine.

Sample Input

5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0

Sample Output

3

Source

 
解析:
  不知道这题我为什么没想出来怎么建边。。。菜死我算了 emm。。
  就是求最小点集覆盖
  匈牙利即可  这里用的dinic
  

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1e5 + , INF = 0x7fffffff;
int n, m, s, t, k;
int head[maxn], cur[maxn], d[maxn], vis[maxn], cnt;
int nex[maxn << ];
struct node
{
int u, v, c;
}Node[maxn << ]; void add_(int u, int v, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c);
add_(v, u, );
} bool bfs()
{
queue<int> Q;
mem(d, );
d[s] = ;
Q.push(s);
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(!d[v] && Node[i].c > )
{
d[v] = d[u] + ;
Q.push(v);
if(v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = ;
if(u == t || cap == )
return cap;
for(int &i = cur[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] == d[u] + && Node[i].c > )
{
int V = dfs(v, min(cap, Node[i].c));
Node[i].c -= V;
Node[i ^ ].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int Dinic(int u)
{
int ans = ;
while(bfs())
{
memcpy(cur, head, sizeof(head));
ans += dfs(u, INF);
}
return ans;
} int main()
{
while(scanf("%d", &n) != EOF && n)
{
rd(m), rd(k);
int a, b, c;
mem(head, -);
cnt = ;
s = , t = n + m + ;
rap(i, , k)
{
rd(a), rd(b), rd(c);
b++, c++;
if(b != && c != )
add(b, n + c, );
}
rap(i, , n)
add(s, i, );
rap(i, , m)
add(n + i, t, );
cout << Dinic(s) << endl;
} return ;
}
Machine Schedule
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17457   Accepted: 7328

Description

As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem.

There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0.

For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y.

Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines.

Input

The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y.

The input will be terminated by a line containing a single zero.

Output

The output should be one integer per line, which means the minimal times of restarting machine.

Sample Input

5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0

Sample Output

3

Source

Machine Schedule POJ - 1325(水归类建边)的更多相关文章

  1. POJ 1325 Machine Schedule——S.B.S.

    Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13731   Accepted: 5873 ...

  2. poj 1325 Machine Schedule 二分匹配,可以用最大流来做

    题目大意:机器调度问题,同一个任务可以在A,B两台不同的机器上以不同的模式完成.机器的初始模式是mode_0,但从任何模式改变成另一个模式需要重启机器.求完成所有工作所需最少重启次数. ======= ...

  3. POJ 1325 && 1274:Machine Schedule 匈牙利算法模板题

    Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12976   Accepted: 5529 ...

  4. poj 1325 Machine Schedule 题解

    Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14479   Accepted: 6172 ...

  5. HDU - 1150 POJ - 1325 Machine Schedule 匈牙利算法(最小点覆盖)

    Machine Schedule As we all know, machine scheduling is a very classical problem in computer science ...

  6. POJ 1325 &amp;&amp; ZOJ 1364--Machine Schedule【二分图 &amp;&amp; 最小点覆盖数】

    Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13071   Accepted: 5575 ...

  7. Poj(1325),最小点覆盖

    题目链接:http://poj.org/problem?id=1325 Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K Total ...

  8. HDU 1150:Machine Schedule(二分匹配,匈牙利算法)

    Machine Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. POJ-1325 Machine Schedule,和3041有着异曲同工之妙,好题!

    Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K       Description As we all know, machine ...

随机推荐

  1. 微信小程序web-view页面安卓下显示空白的解决办法!!!

    web-view页面在你向地址拼接参数展示页面时,在安卓上有时会显示空白 解决方案: A: 普通不需要参数的话可以直接把地址写在src里,不要去在onLoad里获取你的全局变量后再赋值. B: 如果需 ...

  2. en

    发音,这个应该算是学习英语的头等大事,如果没有机会和条件练好发音,也可以先将就着,不过后面你就会感觉到你说的人家可能会听不懂,我自己也曾经深受其害. 基本常用单词积累(大概2000~4000左右的词汇 ...

  3. SQL Server 跨服务器查询

    select * from OPENDATASOURCE( 'SQLOLEDB', 'Data Source=10.10.10.10;User ID=sa;Password=123456'). [CF ...

  4. 小L的试卷

    题目描述 小L期末考试结束,高高兴兴放假回家了,可是那么多试卷,老师还要加班批改,有n份试卷由k个老师批改,n份试卷进行了密封编号,由于试卷上的做题情况和书写的规范程序不一样,批改不同的试卷用时也可能 ...

  5. Linux登录MySQL时出现 Can't connect to local MySQL server through socket '/tmp/mysql.sock'解决方法

    在Linux上登录MySQL时出现如下提示,如下图: 通过查找资料了解到: MySQL有两种连接方式: (1)TCP/IP (2)socket 对mysql.sock来说,其作用是程序与mysqlse ...

  6. iOS-响应链(Responder Chain)

    2017.05.08 20:40* 字数 1306 阅读 740评论 6喜欢 9 工作接近一年,很久没有更新博客.工作中学到很多知识点后面将花时间整理,作为对一年知识学习的总结: 下面是本篇博客的写作 ...

  7. 《梦断代码》Scott Rosenberg著(二)

    书中有一段说的是一个闪烁缺陷——在改变某软件中某个窗体的尺寸时,屏幕会闪烁一秒钟左右.虽然该缺陷不会影响程序运行,但它不符合作者的审美观,历时六个多月仍然没能修正.其实在日常的编程中也有许多小bug的 ...

  8. Ubuntu端口开放

    一.关于iptable的介绍 维基百科:https://zh.wikipedia.org/wiki/Iptables 注意:iptables的操作需要root权限 二.具体操作 sudo apt-ge ...

  9. PAT L2-023 图着色问题

    https://pintia.cn/problem-sets/994805046380707840/problems/994805057298481152 图着色问题是一个著名的NP完全问题.给定无向 ...

  10. Linux 典型应用之常用命令

    软件操作相关命令 软件包管理 (yum) 安装软件 yum install xxx(软件的名字) 如 yum install vim 卸载软件 yum remove xxx(软件的名字) 如 yum ...