题目描述

  给你一个图,每条边有一个权值。要求你选一些边,满足对于每条从\(1\)到\(n\)的路径上(可以不是简单路径)有且仅有一条被选中的边。问你选择的边的边权和最小值。

  \(n\leq 100\)

题解

  先把整张图分为两个集合\(S,T\),其中\(S\)是从原点开始BFS能够到达的点组成的集合,\(T\)是剩下的点组成的集合。

  如果没有在一条路径上只能选一条边的限制,就是一个普通的网络流了。

  我们看看什么情况下这个条件不会被满足。

  

  上面这个图中我们选择了\((1,2)\)和\((4,6)\)。\(S=\{1,3,4\},T=\{2,5,6\}\)。

  可以发现如果多次从\(S\)走到\(T\)(比如上面这张图中\(1\rightarrow2\rightarrow4\rightarrow6\)),那么这些\(S\rightarrow T\)的边就都被选中同时在同一条路径上。所以不合法。

  所以一旦走到\(T\)后就不能走回\(S\)。  

  如果一条边从\(T\)指向\(S\),那么这条边的反向边就满流了。

  为了避免这种情况,只需要把反向边的容量设为\(\infty\)。

  坑点:如果一条边的两个断点与\(S\)或\(T\)不连通,就不要连边。

  时间复杂度:\(O(\)能过\()\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const ll inf=1e15;
namespace flow
{
int v[100010];
ll c[100010];
int t[100010];
int h[100010];
int n;
void add(int x,int y,ll a)
{
n++;
v[n]=y;
c[n]=a;
t[n]=h[x];
h[x]=n;
}
int d[100010];
int e[100010];
int op(int x)
{
return ((x-1)^1)+1;
}
int S,T;
queue<int> q;
int num;
int cur[100010];
void bfs()
{
memset(d,-1,sizeof d);
d[T]=0;
q.push(T);
int x,i;
while(!q.empty())
{
x=q.front();
q.pop();
e[d[x]]++;
for(i=h[x];i;i=t[i])
if(c[op(i)]&&d[v[i]]==-1)
{
d[v[i]]=d[x]+1;
q.push(v[i]);
}
}
}
ll dfs(int x,ll flow)
{
if(x==T)
return flow;
ll s=0,u;
for(int &i=cur[x];i;i=t[i])
if(c[i]&&d[v[i]]==d[x]-1)
{
u=dfs(v[i],min(flow,c[i]));
s+=u;
flow-=u;
c[i]-=u;
c[op(i)]+=u;
if(!flow)
return s;
}
e[d[x]]--;
if(!e[d[x]])
d[S]=num;
d[x]++;
e[d[x]]++;
cur[x]=h[x];
return s;
}
ll solve()
{
ll ans=0;
bfs();
memcpy(cur,h,sizeof h);
while(d[S]>=0&&d[S]<=num-1)
ans+=dfs(S,inf);
return ans;
}
}
void add(int x,int y,int c)
{
flow::add(x,y,c);
flow::add(y,x,inf);
}
int f[110][110];
int lx[2510];
int ly[2510];
int lz[2510];
int n,m;
int main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
int i,j,k;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&lx[i],&ly[i],&lz[i]);
lx[i]++;
ly[i]++;
f[lx[i]][ly[i]]=1;
}
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
if(i!=k&&f[i][k])
for(j=1;j<=n;j++)
if(j!=i&&j!=k)
f[i][j]|=f[i][k]&&f[k][j];
for(i=1;i<=n;i++)
f[i][i]=1;
flow::S=1;
flow::T=n;
flow::num=n;
for(i=1;i<=m;i++)
if(f[1][lx[i]]&&f[ly[i]][n])
add(lx[i],ly[i],lz[i]);
ll ans=flow::solve();
if(ans>=inf)
printf("-1\n");
else
printf("%lld\n",ans);
return 0;
}

【XSY2708】hack 网络流的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (贪心或有源汇上下界网络流)

    "Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a ...

  2. 【洛谷】NOIP提高组模拟赛Day1【组合数学】【贪心+背包】【网络流判断是否满流以及流量方案】

    U41568 Agent1 题目背景 2018年11月17日,中国香港将会迎来一场XM大战,是世界各地的ENLIGHTENED与RESISTANCE开战的地点,某地 的ENLIGHTENED总部也想派 ...

  3. css常用hack

    原文地址:css常用hack 突然想起今天早上在CNZZ看到的统计数据,使用IE6.7的用户比例还真多,看到之后我的心都碎了.微软都放弃了为毛还有这么多人不死心? 所以说,IE下的兼容还是得做的. – ...

  4. CSS3_01之选择器、Hack

    1.兄弟选择器:①相邻兄弟选择器:元素的后一个兄弟元素,选择器1+选择器2:②通用兄弟选择器:元素后的所有兄弟元素,选择器1~选择器2: 2.属性选择器:attr表示属性名称,elem表示元素名:①[ ...

  5. plain framework 1 网络流 缓存数据详解

    网络流是什么?为什么网络流中需要存在缓存数据?为什么PF中要采用缓存网络数据的机制?带着这几个疑问,让我们好好详细的了解一下在网络数据交互中我们容易忽视以及薄弱的一块.该部分为PF现有的网络流模型,但 ...

  6. CSS Hack技术介绍及常用的Hack技巧集锦

    一.什么是CSS Hack? 不同的浏览器对CSS的解析结果是不同的,因此会导致相同的CSS输出的页面效果不同,这就需要CSS Hack来解决浏览器局部的兼容性问题.而这个针对不同的浏览器写不同的CS ...

  7. Medial Queries的另一用法——实现IE hack

    众所周知,有些时候为了实现IE下的某些效果与现代浏览器一致,我们不得不使用一些hack手段来实现目的.比如说使用"\0","\"和"\9"来 ...

  8. CSS Hack

    CSS HACK,网上有很多,主要是IE版本不同造成的,尽量不要用CSS HACK,实在调不过去可以用一用,相信以后随着IE低版本的淘汰,CSS HACK也将不在使用. 类内部HACK IE6识别 - ...

  9. 网络流模板 NetworkFlow

    身边的小伙伴们都在愉快地刷网络流,我也来写一发模板好了. Network Flow - Maximum Flow Time Limit : 1 sec, Memory Limit : 65536 KB ...

随机推荐

  1. Python Revisited Day 02 (数据类型)

    目录 Python 关键字 整数 整数转换函数 整数位逻辑操作符 浮点类型 math模块函数与常量 复数 精确的十进制数字 decimal 字符串 str.format() 格式规约 Python 关 ...

  2. ASP.NET项目开发

    ASP.NET项目开发 1.C/S模式 (client 客户端 server 服务器):QQ.证券.酷狗.旺旺...需要下载响应软件: 工作原理:客户端请求--ASP.net服务器端应用(<-- ...

  3. socket流程

  4. mac下的快捷键

    功能 快捷键 通用 打开新窗口 command + n 打开新标签 command + t 关闭标签 command + w 缩小 command - 放大 command + 全屏.取消全屏 com ...

  5. node学习: package.json

    package.json 定义了这个项目所需要的各种模块,以及项目的配置信息(比如名称.版本.许可证等元数据) 1.创建 package.json npm init npm init –yes 2.p ...

  6. Nginx Configuring HTTPS servers

    Configuring HTTPS servershttp://nginx.org/en/docs/http/configuring_https_servers.html Configuring HT ...

  7. linux下编译upx ucl

    昨天,UPX发布了3.93版本. UPX(the Ultimate Packer for eXecutables)是一个非常全面的可执行文件压缩软件,支持dos/exe.dos/com.dos/sys ...

  8. python3 常见的两种文件上传方法

    1.上传页面带input type格式send_keys传值方式上传不能大于60k(具体看开发设置的value)文件大小 fx.find_element_by_id('xx').send_keys(r ...

  9. Laravel Providers——服务提供者的注册与启动源码解析

      本文 GitBook 地址: https://www.gitbook.com/book/leoyang90/laravel-source-analysishttps://learnku.com/a ...

  10. Oracle分析函数row_number()等的使用实例

    --分析函数 --rank() over(order by) --值相同,排名相同,序号跳跃 select * from t_account select rank() over(order by u ...