bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面
ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数)
线段树合并
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#define Sqr(x) ((x)*(x))
using namespace std;
const int N = 2e5 + 5;
const int M = 4e6 + 5;
long long cnt1, cnt2;
struct Seg{
int w[M], sz, ls[M], rs[M];
void ins(int l, int r, int x, int &rt){
if(!rt) rt = ++sz;
if(l == r) {w[rt] = 1; return ;}
int mid = l + ((r - l) >> 1);
if(x <= mid) ins(l, mid, x, ls[rt]);
else ins(mid + 1, r, x, rs[rt]);
w[rt] = w[ls[rt]] + w[rs[rt]];
}
int merge(int x, int y){
if(!x || !y) return x + y;
cnt1 += 1ll * w[ls[x]] * w[rs[y]];
cnt2 += 1ll * w[rs[x]] * w[ls[y]];
ls[x] = merge(ls[x], ls[y]);
rs[x] = merge(rs[x], rs[y]);
w[x] = w[ls[x]] + w[rs[x]];
return x;
}
}seg;
int n, m, sz, rt[N << 2], l[N << 2], r[N << 2], w[N << 2];
void init(int &cur){
cur = ++sz;
scanf("%d", &w[cur]);
if(!w[cur]) {init(l[cur]); init(r[cur]);}
else seg.ins(1, n, w[cur], rt[cur]);
}
long long solve(int cur){
if(w[cur]) return 0;//如果不在叶子节点停下 叶子就会被合并成空树
long long res = solve(l[cur]) + solve(r[cur]);
//printf("%d %lld %d %d\n", cur, res, l[cur], r[cur]);
cnt1 = cnt2 = 0;
rt[cur] = seg.merge(rt[l[cur]], rt[r[cur]]);
//printf("%lld %lld\n", cnt1, cnt2);
return res + min(cnt1, cnt2);
}
int main() {
scanf("%d", &n);
init(m);
printf("%lld\n", solve(m));
//system("PAUSE");
return 0;
}
/*
检查所有的int函数是否有返回值
*/
bzoj2212[Poi2011]Tree Rotations [线段树合并]的更多相关文章
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...
- bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并
Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
- [bzoj2212]Tree Rotations(线段树合并)
解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...
- BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...
- [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对
题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...
随机推荐
- amd,cmd规范
AMD 和 CMD 的区别有哪些? AMD规范与CMD规范的区别 回顾:前端模块化和AMD.CMD规范(全) 浅析JS模块规范:AMD,CMD,CommonJS 理解AMD ,CMD,CommonJS ...
- 用PhoneGap创建第一个项目
1.在eclipse中新建Android Project2.在项目的目录下,建两个文件夹:/libs/assets/www3.进入将刚刚下载并解压的PhoneGap包里Anroid目录,我们需要的资源 ...
- yield from
一.yield 关于yield详细可参考我这篇文章 下面是一个带yield的生成器: def gen_yield(): while True: recv = yield do something wi ...
- git repository description
Git - Plumbing and Porcelainhttps://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain gith ...
- sql学习内容记录
1.left函数 left(字段,长度):获取指定字段左侧的数据,类似substring函数 2.union / union all 将多个记录合并成一个完整的数据集 3.insert into se ...
- 通过event记录sql
providers EventServiceProvider.php 添加 protected $listen = [ 'Illuminate\Database\Events\QueryExecute ...
- 【知乎】WinForm 与 WPF的区别
你想上班 那么针对公司需求学如果只是自己写着玩 那么区分一下1.你的程序运行在 自己机器a.一个工具而已 要的是cooooooool 那么WPFb.一个工具而已 要的是useful easy 那么wi ...
- Windows 激活的简单办法(能上网)
1. 之前很多机器上面总是提示我 盗版系统看起来挺不high的 2. 还是使用之前的办法来进行激活 slmgr (之前写过) /ipk <Product Key> 安装产品密钥(替换现 ...
- sqlyog Can't connect to MySQL server on localhost (0)
https://blog.csdn.net/l1336037686/article/details/78940223
- C# Note32: 查漏补缺
(1)Using的三种使用方式 (2)C#详解值类型和引用类型区别 (3)c#中字段(field)和属性(property)的区别 (4)C#中的 int? int?:表示可空类型,就是一种特殊的值类 ...