(最小生成树) codeVs 1231 最优布线问题
学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的。为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地通过其他计算机实现和另外一台计算机连接。
为了使得任意两台计算机之间都是连通的(不管是直接还是间接的),需要在若干台计算机之间用网线直接连接,现在想使得总的连接费用最省,让你编程计算这个最小的费用。
输入第一行为两个整数n,m(2<=n<=100000,2<=m<=100000),表示计算机总数,和可以互相建立连接的连接个数。接下来m行,每行三个整数a,b,c 表示在机器a和机器b之间建立连接的话费是c。(题目保证一定存在可行的连通方案, 数据中可能存在权值不一样的重边,但是保证没有自环)
输出只有一行一个整数,表示最省的总连接费用。
3 3
1 2 1
1 3 2
2 3 1
2
------------------------------------------------------------------------------------------------------------------------------------------------------------------
计算机总数最大为100000,所以用Prim算法时建立二维数组会越界,而用常规Kruskal算法会超时,所以用并查集优化的Kruskal算法。
C++代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = ;
struct Edge{
int a;
int b;
int c;
}e[N];
bool cmp(Edge a,Edge b){
return a.c < b.c;
}
int n,m;
int father[N];
void Init(int n){
for(int i = ; i <= n; i++)
father[i] = i;
}
int Find(int x){
if(x != father[x])
father[x] = Find(father[x]);
return father[x];
}
int Merge(int a,int b){
int p = Find(a);
int q = Find(b);
if(p == q) return ;
// if(p > q)
// father[p] = q;
// else
// father[q] = p;
father[p] = q; //可以不用比较哪个父节点的值更大,直接把其中一个并到另一个下面就行。
return ;
}
long long Kruskal(int n,int m){
long long ans = ;
for(int i = ; i <= m; i++){
if(Merge(e[i].a,e[i].b)){
ans+=e[i].c;
n--;
if(n==)
return ans;
}
}
return ;
}
int main(){
cin>>n>>m;
Init(n);
for(int i = ; i <= m; i++){
cin>>e[i].a>>e[i].b>>e[i].c;
}
sort(e+,e+m+,cmp);
long long ans = Kruskal(n,m);
cout<<ans<<endl;
return ;
}
(最小生成树) codeVs 1231 最优布线问题的更多相关文章
- Codevs 1231 最优布线问题
题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地通过其他计算机实现和另外 ...
- codevs 1231 最优布线问题 x(find函数要从娃娃抓起系列)
题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一 ...
- codevs1231 最优布线问题
1231 最优布线问题 题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地 ...
- 27.prim算法 最优布线问题(wire.cpp)
[例4-10].最优布线问题(wire.cpp) [问题描述] 学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来.两台计算机被连接是指它们间有数据线连接.由于计算机所处的位置不同,因此不 ...
- [图论]最优布线问题:kruskal
最优布线问题 目录 最优布线问题 Description Input Output Sample Input Sample Output Hint 解析 代码 Description 学校有n台计算机 ...
- [图论]最优布线问题:prim
最优布线问题 目录 最优布线问题 Description Input Output Sample Input Sample Output Hint 解析 代码 Description 学校有n台计算机 ...
- 最优布线问题(wire.cpp)
最优布线问题(wire.cpp) [问题描述] 学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来.两台计算机被连接是指它们间有数据线连接.由于计算机所处的位置不同,因此不同的两台计算机的 ...
- T1231 最优布线 codevs
http://codevs.cn/problem/1231/ 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 学校需要将n ...
- Codevs 1173 最优贸易 2009年NOIP全国联赛提高组
1173 最优贸易 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description [问题描述] C 国有n ...
随机推荐
- Graphics
Image img = Image.FromFile("g1.jpg");//建立Image对象Graphics g = Graphics.FromImage(img);//创建G ...
- Lodop连续打印内容逐渐偏移怎么办
Lodop打印控件中,可以使用打印机自带的纸张名称,也可以自定义纸张.(SET_PRINT_PAGESIZE语句).通常进行打印开发,为了避免浪费纸张,会用虚拟打印机效果作为依据,虚拟打印机连续打印多 ...
- LODOP打印超文本中部分文字消失的一种情况1
如果有两对空span,第一对里面是空格,第二对里面是文字,在这两对span标签之间的文字会消失. <span> </span>文字<span>文字</span ...
- react 入坑笔记(二) - State
React State 一. state 大致思想:在 react 中,每个组件都是一个状态机,通过与用户的交互,实现不同状态,然后渲染 UI,让用户界面和数据保持一致.React 里,只需更新组件的 ...
- Spring Boot 构建电商基础秒杀项目 (三) 通用的返回对象 & 异常处理
SpringBoot构建电商基础秒杀项目 学习笔记 定义通用的返回对象 public class CommonReturnType { // success, fail private String ...
- Codeforces#543 div2 A. Technogoblet of Fire(阅读理解)
题目链接:http://codeforces.com/problemset/problem/1121/A 真·阅读理解 题意就是 有n个人 pi表示他们的强度 si表示他们来自哪个学校 现在Arkad ...
- 了解AutoCAD对象层次结构 —— 5 —— 块表
为了清楚的了解块表的组成内容,让我们利用MgdDbg工具查看一下块表中的块表记录.在开始页面,以无样板模式新建一个.dwg文件(图 4‑7(1)),这样的话,默认的块表记录只有3条(图 4‑7(2)) ...
- redis日常使用汇总--持续更新
redis日常使用汇总--持续更新 工作中有较多用到redis的场景,尤其是触及性能优化的方面,传统的缓存策略在处理持久化和多服务间数据共享的问题总是不尽人意,此时引入redis,但redis是单线程 ...
- POJ 3621-Sightseeing Cows-最优比率环|SPFA+二分
最优比率环问题.二分答案,对于每一个mid,把节点的happy值归类到边上. 对于每条边,用mid×weight减去happy值,如果不存在负环,说明还可以更大. /*---------------- ...
- Python多进程、多线程、协程
转载:https://www.cnblogs.com/huangguifeng/p/7632799.html 首先我们来了解下python中的进程,线程以及协程! 从计算机硬件角度: 计算机的核心是C ...