题目链接

思路

这个题思路挺巧妙的。

情况一:

首先如果这堆石子的数量是1~5,那么肯定是先手赢。因为先手可以直接拿走这些石子。如果石子数量恰好是6,那么肯定是后手赢。因为先手无论怎样拿也无法直接拿走六个石子。

情况二:

考虑继续推广,如果石子数是7~11,那么先手也能赢。因为先手可以先拿成6,然后就变成了情况1。如果石子数是12,那么一定是后手赢。因为根据上面讨论,当石子数量为6的时候,此时的先手一定输。如果石子数量为12,那么现在的人无论如何也无法拿成6,所以肯定会输。

结论

如果石子数是6的倍数,那么此时的先手会输。如果不是6的倍数,那么现在的先手可以把石子拿成6的倍数,并且另一个人变成先手。所以此时后手赢

代码

#include<cstdio>
#include<iostream>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long ll;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int main() {
int t = read();
while(t--) {
ll n = read();
if(!(n % 6)) puts("Roy wins!");
else puts("October wins!");
}
return 0;
}

每篇一言

一旦下雨,路上就充满肮脏和泥泞 ——从你的全世界路过

[luogu4018][Roy&October之取石子]的更多相关文章

  1. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  2. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  3. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  4. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  5. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  6. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  7. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  8. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. 剑指offer(1)

    题目: 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  2. 转《vue引入第三方js库》

    一.绝对路径直接引入,全局可用 二.绝对路径直接引入,配置后,import 引入后再使用 三.webpack中配置 alias,import 引入后再使用 四.webpack 中配置 plugins, ...

  3. 如何在网页中用echarts图表插件做出静态呈现效果

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. yii2的下载安装

    1.直接使用归档文件安装yii2的高级模板: 从 yiiframework.com 下载归档文件. 下载yii2的高级模板的压缩文件, 将yii-advanced-app-2.0.12文件夹复制到项目 ...

  5. 多IP地址--笔记

    多IP 地址特性使虚拟用户可以在一个load generator上运行且被识别为多个IP地址 1 虚拟IP是同一个generator上的多个IP,这种分配过程由controller自动来进行 2 对于 ...

  6. 常用Mac快捷键

    1.复制Cmd + C 粘贴Cmd + C —-> Cmd + V 剪切Cmd + C —-> Cmd + Opt + V 2.查看隐藏文件 Cmd + shift + . 3. 货币符号 ...

  7. css 優先級

    !impoetant:1000 行間樣式 id:100 類選擇器.屬性選擇器和偽類:10 元素及偽元素:1 通配選擇器:0 相同優先級的樣式,後來居上. 當超過256種的時候,瀏覽器會不遵守以上優先級 ...

  8. LODOP打印控件如何提示用户升级下载安装新版本

    Lodop.C-Lodop在不断完善功能和更新中,新版本修复了很多问题,以及增加很多有利的功能,网站如何更新版本,提示用户下载新版本呢?更新版本很简单,只需要三步:1.替换提示安装部分的自己放置的路径 ...

  9. react 入坑笔记(五) - 条件渲染和列表渲染

    条件渲染和列表渲染 一.条件渲染 条件渲染较简单,使用 JavaScript 操作符 if 或条件运算符来创建表示当前状态的元素,然后让 React 根据它们来更新 UI. 贴一个小栗子: funct ...

  10. Ftp、Ftps与Sftp之间的区别

    Ftp FTP 是File Transfer Protocol(文件传输协议)的英文简称,而中文简称为“文传协议”.用于Internet上的控制文件的双向传输.同时,它也是一个应用程序(Applica ...