Implement a trie with insert, search, and startsWith methods.

Note:
You may assume that all inputs are consist of lowercase letters a-z.

参考百度百科:Trie树

trie, also called digital tree and sometimes radix tree or prefix tree (as they can be searched by prefixes)

The time complexity to insert and to search is O(m), where m is the length of the string.

标准Trie树的应用和优缺点

(1) 全字匹配:确定待查字串是否与集合的一个单词完全匹配。如上代码fullMatch()。

(2) 前缀匹配:查找集合中与以s为前缀的所有串。

注意:Trie树的结构并不适合用来查找子串。这一点和前面提到的PAT Tree以及后面专门要提到的Suffix Tree的作用有很大不同。

优点: 查找效率比与集合中的每一个字符串做匹配的效率要高很多。在o(m)时间内搜索一个长度为m的字符串s是否在字典里。Predictable O(k) lookup time where k is the size of the key

缺点:标准Trie的空间利用率不高,可能存在大量结点中只有一个子结点,这样的结点绝对是一种浪费。正是这个原因,才迅速推动了下面所讲的压缩trie的开发。

什么时候用Trie?

It all depends on what problem you're trying to solve. If all you need to do is insertions and lookups, go with a hash table. If you need to solve more complex problems such as prefix-related queries, then a trie might be the better solution.

像word search II就是跟前缀有关,如果dfs发现当前形成的前缀都不在字典中,就没必要再搜索下去了,所以用trie不用hashSet

Easy version of implement Trie. TrieNode only contains TrieNode[] children, and boolean isWord two fields

 class Trie {
class TrieNode {
TrieNode[] children;
boolean isWord;
public TrieNode() {
this.children = new TrieNode[26];
this.isWord = false;
}
} TrieNode root; /** Initialize your data structure here. */
public Trie() {
this.root = new TrieNode();
} /** Inserts a word into the trie. */
public void insert(String word) {
if (word == null || word.length() == 0) return;
TrieNode cur = this.root;
for (int i = 0; i < word.length(); i ++) {
if (cur.children[word.charAt(i) - 'a'] == null) {
cur.children[word.charAt(i) - 'a'] = new TrieNode();
}
cur = cur.children[word.charAt(i) - 'a'];
}
cur.isWord = true;
} /** Returns if the word is in the trie. */
public boolean search(String word) {
TrieNode cur = this.root;
for (int i = 0; i < word.length(); i ++) {
if (cur.children[word.charAt(i) - 'a'] == null) return false;
cur = cur.children[word.charAt(i) - 'a'];
}
return cur.isWord;
} /** Returns if there is any word in the trie that starts with the given prefix. */
public boolean startsWith(String prefix) {
TrieNode cur = this.root;
for (int i = 0; i < prefix.length(); i ++) {
if (cur.children[prefix.charAt(i) - 'a'] == null) return false;
cur = cur.children[prefix.charAt(i) - 'a'];
}
return true;
}
}

Older version, TrieNode also has num and val fields, which might not be that useful.

 class TrieNode {
// Initialize your data structure here.
int num; //How many words go through this TrieNode
TrieNode[] son; //collection of sons
boolean isEnd;
char val; public TrieNode() {
this.num = 0;
this.son = new TrieNode[26];
this.isEnd = false;
}
} public class Trie {
private TrieNode root; public Trie() {
root = new TrieNode();
} // Inserts a word into the trie.
public void insert(String word) {
if (word==null || word.length()==0) return;
char[] arr = word.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) {
node.son[pos] = new TrieNode();
node.son[pos].num++;
node.son[pos].val = arr[i];
}
else {
node.son[pos].num++;
}
node = node.son[pos];
}
node.isEnd = true;
} // Returns if the word is in the trie.
public boolean search(String word) {
char[] arr = word.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) return false;
node = node.son[pos];
}
return node.isEnd;
} // Returns if there is any word in the trie
// that starts with the given prefix.
public boolean startsWith(String prefix) {
char[] arr = prefix.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) return false;
node = node.son[pos];
}
return true;
}
} // Your Trie object will be instantiated and called as such:
// Trie trie = new Trie();
// trie.insert("somestring");
// trie.search("key");

Leetcode: Implement Trie (Prefix Tree) && Summary: Trie的更多相关文章

  1. 【LeetCode】208. Implement Trie (Prefix Tree) 实现 Trie (前缀树)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:Leetcode, 力扣,Trie, 前缀树,字典树,20 ...

  2. Leetcode208. Implement Trie (Prefix Tree)实现Trie(前缀树)

    实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie(); trie.insert(" ...

  3. leetcode面试准备:Implement Trie (Prefix Tree)

    leetcode面试准备:Implement Trie (Prefix Tree) 1 题目 Implement a trie withinsert, search, and startsWith m ...

  4. [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆

    Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...

  5. 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word - Data structure design

    字典树(查找树) 26个分支作用:检测字符串是否在这个字典里面插入.查找 字典树与哈希表的对比:时间复杂度:以字符来看:O(N).O(N) 以字符串来看:O(1).O(1)空间复杂度:字典树远远小于哈 ...

  6. 【LeetCode】208. Implement Trie (Prefix Tree)

    Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Note:You ...

  7. 【刷题-LeetCode】208. Implement Trie (Prefix Tree)

    Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Example: ...

  8. LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design

    字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith  ...

  9. 【leetcode】208. Implement Trie (Prefix Tree 字典树)

    A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently s ...

随机推荐

  1. session配置理解

    session.cache_limiter 指定会话页面所使用的缓冲控制方法,默认为nocache.session.cache_expire 以分钟数指定缓冲的会话页面的存活期,默认为180.此设定对 ...

  2. PureBasic 集成Form设计器的使用

    The PureBasic IDE has a very powerful integrated form designer, which allows to design easily window ...

  3. JavaScript中的prototype

    关于prototype: 理解prototype不应把它和继承混淆.A的prototype为B的一个实例,可以理解A将B中的方法和属性全部克隆了一遍.A能使用B的方法和属性.这里强调的是克隆而不是继承 ...

  4. 将真彩色转换成增强色的方法(即RGB32位或RGB24位颜色转换成RGB16位颜色的函数)

    今天由于程序需要,需要将真彩色转换成增强色进行颜色匹配,上网搜了一下没搜到相应函数,于是研究了一下RGB16位的增强色,写了这个函数: public static int RGB16(int argb ...

  5. importSTV的使用

    一:由HDFS将数据直接导入到HBase中 1.生成TSV文件 2.内容 3.上传到HDFS 4.运行 export HBASE_HOME=/etc/opt/modules/hbase-0.98.6- ...

  6. 【Android开发学习笔记】【第三课】Activity和Intent

    首先来看一个Activity当中启动另一个Activity,直接上代码说吧: (1)首先要多个Activity,那么首先在res-layout下新建一个 Other.xml,用来充当第二个Activi ...

  7. 获取表单的初始值,模拟placeholder属性

    input和textarea有一个默认属性defaultValue,即初始值. 即使在页面操作修改了input和textarea的内容,获取到的defaultValue依然是初始值.可通过该值模拟pl ...

  8. gradlew常用命令

    ./gradlew -v 查看版本 ./gradlew clean 清理.下载依赖 ./gradlew build  构建 libgdx项目中的gradlew run: ./gradlew deskt ...

  9. 算法训练 A+B Problem

     算法训练 A+B Problem   时间限制:1.0s   内存限制:512.0MB      问题描述 输入A,B. 输出A+B. 输入格式 输入包含两个整数A,B,用一个空格分隔. 输出格式 ...

  10. Intervals---poj1201(差分约束系统)

    题目链接:http://poj.org/problem?id=1201 题目说[ai, bi]区间内和点集Z至少有ci个共同元素,那也就是说如果我用Si表示区间[0,i]区间内至少有多少个元素的话,那 ...