Leetcode: Implement Trie (Prefix Tree) && Summary: Trie
Implement a trie with insert, search, and startsWith methods. Note:
You may assume that all inputs are consist of lowercase letters a-z.
参考百度百科:Trie树
a trie, also called digital tree and sometimes radix tree or prefix tree (as they can be searched by prefixes)
The time complexity to insert and to search is O(m), where m is the length of the string.
标准Trie树的应用和优缺点
(1) 全字匹配:确定待查字串是否与集合的一个单词完全匹配。如上代码fullMatch()。
(2) 前缀匹配:查找集合中与以s为前缀的所有串。
注意:Trie树的结构并不适合用来查找子串。这一点和前面提到的PAT Tree以及后面专门要提到的Suffix Tree的作用有很大不同。
优点: 查找效率比与集合中的每一个字符串做匹配的效率要高很多。在o(m)时间内搜索一个长度为m的字符串s是否在字典里。Predictable O(k) lookup time where k is the size of the key
缺点:标准Trie的空间利用率不高,可能存在大量结点中只有一个子结点,这样的结点绝对是一种浪费。正是这个原因,才迅速推动了下面所讲的压缩trie的开发。
什么时候用Trie?
It all depends on what problem you're trying to solve. If all you need to do is insertions and lookups, go with a hash table. If you need to solve more complex problems such as prefix-related queries, then a trie might be the better solution.
像word search II就是跟前缀有关,如果dfs发现当前形成的前缀都不在字典中,就没必要再搜索下去了,所以用trie不用hashSet
Easy version of implement Trie. TrieNode only contains TrieNode[] children, and boolean isWord two fields
class Trie {
class TrieNode {
TrieNode[] children;
boolean isWord;
public TrieNode() {
this.children = new TrieNode[26];
this.isWord = false;
}
}
TrieNode root;
/** Initialize your data structure here. */
public Trie() {
this.root = new TrieNode();
}
/** Inserts a word into the trie. */
public void insert(String word) {
if (word == null || word.length() == 0) return;
TrieNode cur = this.root;
for (int i = 0; i < word.length(); i ++) {
if (cur.children[word.charAt(i) - 'a'] == null) {
cur.children[word.charAt(i) - 'a'] = new TrieNode();
}
cur = cur.children[word.charAt(i) - 'a'];
}
cur.isWord = true;
}
/** Returns if the word is in the trie. */
public boolean search(String word) {
TrieNode cur = this.root;
for (int i = 0; i < word.length(); i ++) {
if (cur.children[word.charAt(i) - 'a'] == null) return false;
cur = cur.children[word.charAt(i) - 'a'];
}
return cur.isWord;
}
/** Returns if there is any word in the trie that starts with the given prefix. */
public boolean startsWith(String prefix) {
TrieNode cur = this.root;
for (int i = 0; i < prefix.length(); i ++) {
if (cur.children[prefix.charAt(i) - 'a'] == null) return false;
cur = cur.children[prefix.charAt(i) - 'a'];
}
return true;
}
}
Older version, TrieNode also has num and val fields, which might not be that useful.
class TrieNode {
// Initialize your data structure here.
int num; //How many words go through this TrieNode
TrieNode[] son; //collection of sons
boolean isEnd;
char val;
public TrieNode() {
this.num = 0;
this.son = new TrieNode[26];
this.isEnd = false;
}
}
public class Trie {
private TrieNode root;
public Trie() {
root = new TrieNode();
}
// Inserts a word into the trie.
public void insert(String word) {
if (word==null || word.length()==0) return;
char[] arr = word.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) {
node.son[pos] = new TrieNode();
node.son[pos].num++;
node.son[pos].val = arr[i];
}
else {
node.son[pos].num++;
}
node = node.son[pos];
}
node.isEnd = true;
}
// Returns if the word is in the trie.
public boolean search(String word) {
char[] arr = word.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) return false;
node = node.son[pos];
}
return node.isEnd;
}
// Returns if there is any word in the trie
// that starts with the given prefix.
public boolean startsWith(String prefix) {
char[] arr = prefix.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) return false;
node = node.son[pos];
}
return true;
}
}
// Your Trie object will be instantiated and called as such:
// Trie trie = new Trie();
// trie.insert("somestring");
// trie.search("key");
Leetcode: Implement Trie (Prefix Tree) && Summary: Trie的更多相关文章
- 【LeetCode】208. Implement Trie (Prefix Tree) 实现 Trie (前缀树)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:Leetcode, 力扣,Trie, 前缀树,字典树,20 ...
- Leetcode208. Implement Trie (Prefix Tree)实现Trie(前缀树)
实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie(); trie.insert(" ...
- leetcode面试准备:Implement Trie (Prefix Tree)
leetcode面试准备:Implement Trie (Prefix Tree) 1 题目 Implement a trie withinsert, search, and startsWith m ...
- [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆
Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...
- 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word - Data structure design
字典树(查找树) 26个分支作用:检测字符串是否在这个字典里面插入.查找 字典树与哈希表的对比:时间复杂度:以字符来看:O(N).O(N) 以字符串来看:O(1).O(1)空间复杂度:字典树远远小于哈 ...
- 【LeetCode】208. Implement Trie (Prefix Tree)
Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Note:You ...
- 【刷题-LeetCode】208. Implement Trie (Prefix Tree)
Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Example: ...
- LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design
字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith ...
- 【leetcode】208. Implement Trie (Prefix Tree 字典树)
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently s ...
随机推荐
- web_custom_request函数详解
在LR中当使用HTML录制方式时,录制的脚本中主要由函数web_link().web_submit_form().web_url().web_submit_data()组成,当使用HTTP录制方式时, ...
- 看StackOverflow如何用25台服务器撑起5.6亿的月PV
问答社区网络 StackExchange 由 100 多个网站构成,其中包括了 Alexa 排名第 54 的 StackOverflow.StackExchang 有 400 万用户,每月 5.6 亿 ...
- MyBatis代码自动生成
MyBatis的代码自动生成的功能,由于MyBatis属于一种半自动的ORM框架,所以主要的工作就是配置Mapping映射文件,但是由于手写映射文件很容易出错,所以可利用MyBatis生成器自动生成实 ...
- settimeout 传递带有参数的函数
方法一:传递带有参数的function给settimeout,写个函数,该函数返回一个不带参数的函数 <script language="javascript"> fu ...
- Educational Codeforces Round 16---部分题解
710A. King Moves 给你图中一点求出它周围有几个可达的点: 除边界之外都是8个,边界处理一下即可: #include<iostream> #include<cstdio ...
- 搜索框UISearchController的使用(iOS8.0以后替代UISearchBar + UISearchDisplayController)
1.searchResultsUpdater:设置显示搜索结果的控制器 ? 1 _mySearchController.searchResultsUpdater = self; 2.dimsB ...
- sql 显示0001
- Spring AOP 实现原理与 CGLIB 应用
https://www.ibm.com/developerworks/cn/java/j-lo-springaopcglib/ AOP(Aspect Orient Programming),也就是面向 ...
- 详解Spring事件驱动模型
转载自:http://jinnianshilongnian.iteye.com/blog/1902886#comments 事件驱动模型简介 事件驱动模型也就是我们常说的观察者,或者发布-订阅模型:理 ...
- 什么是webshell?
webshell是web入侵的脚本攻击工具. 简单的说来,webshell就是一个asp或php木马后门,黑客在入侵了一个网站后,常常在将这些 asp或php木马后门文件放置在网站服务器的web目录中 ...