Lintcode: Segment Tree Query
For an integer array (index from 0 to n-1, where n is the size of this array), in the corresponding SegmentTree, each node stores an extra attribute max to denote the maximum number in the interval of the array (index from start to end). Design a query method with three parameters root, start and end, find the maximum number in the interval [start, end] by the given root of segment tree. Have you met this question in a real interview? Yes
Example
For array [1, 4, 2, 3], the corresponding Segment Tree is: [0, 3, max=4]
/ \
[0,1,max=4] [2,3,max=3]
/ \ / \
[0,0,max=1] [1,1,max=4] [2,2,max=2], [3,3,max=3]
query(root, 1, 1), return 4 query(root, 1, 2), return 4 query(root, 2, 3), return 3 query(root, 0, 2), return 4
这道题的启示是:Segment Tree 不光是可以找线段和,还可以找线段max, min等各种各样的指标
/**
* Definition of SegmentTreeNode:
* public class SegmentTreeNode {
* public int start, end, max;
* public SegmentTreeNode left, right;
* public SegmentTreeNode(int start, int end, int max) {
* this.start = start;
* this.end = end;
* this.max = max
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
*@param root, start, end: The root of segment tree and
* an segment / interval
*@return: The maximum number in the interval [start, end]
*/
public int query(SegmentTreeNode root, int start, int end) {
// write your code here
if (root.start==start && root.end==end) return root.max;
int mid = (root.start+root.end)/2;
if (end <= mid) return query(root.left, start, end);
else if (start > mid) return query(root.right, start, end);
else return Math.max(query(root.left, start, mid), query(root.right, mid+1, end));
}
}
Lintcode: Segment Tree Query的更多相关文章
- Lintcode: Segment Tree Query II
For an array, we can build a SegmentTree for it, each node stores an extra attribute count to denote ...
- Lintcode247 Segment Tree Query II solution 题解
[题目描述] For an array, we can build a Segment Tree for it, each node stores an extra attribute count t ...
- Segment Tree Query I & II
Segment Tree Query I For an integer array (index from 0 to n-1, where n is the size of this array), ...
- Lintcode: Segment Tree Modify
For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in thi ...
- [LintCode] Segment Tree Build II 建立线段树之二
The structure of Segment Tree is a binary tree which each node has two attributes startand end denot ...
- [LintCode] Segment Tree Build 建立线段树
The structure of Segment Tree is a binary tree which each node has two attributes start and end deno ...
- Lintcode: Segment Tree Build
The structure of Segment Tree is a binary tree which each node has two attributes start and end deno ...
- 247. Segment Tree Query II
最后更新 二刷 09-Jna-2017 利用线段树进行区间查找,重点还是如何判断每一层的覆盖区间,和覆盖去见与当前NODE值域的关系. public class Solution { public i ...
- 202. Segment Tree Query
最后更新 二刷 09-Jan-17 正儿八经线段树的应用了. 查找区间内的值. 对于某一个Node,有这样的可能: 1)需要查找区间和当前NODE没有覆盖部分,那么直接回去就行了. 2)有覆盖的部分, ...
随机推荐
- TCPdump抓包命令详解--摘
http://blog.csdn.net/s_k_yliu/article/details/6665673/ http://starsliao.blog.163.com/blog/static/890 ...
- Myeclipse配置 项目编码格式
修改MyEclipse 工作空间的编码 修改之后,在该工作空间下创建的任何项目,编码都是UTF-8,既,该项目下所有文件都是utf-8 格式,工作空间影响项目,项目影响文件 General --> ...
- CSS的display属性,显示或隐藏元素
<html> <head> <script type="text/javascript"> function removeElement() { ...
- 让Qt的无边框窗口支持拖拽、Aero Snap、窗口阴影等特性
环境:Desktop Qt 5.4.1 MSVC2013 32bit 需要的库:dwmapi.lib .user32.lib 需要头文件:<dwmapi.h> .<windowsx. ...
- Emiller's Advanced Topics In Nginx Module Development
Emiller的Nginx模块开发指南 By Evan Miller DRAFT: August 13, 2009 (changes) 翻译:Kongch @2010年1月5日 0:04am -- 2 ...
- Magento Service Temporarily Unavailable解决方法
插件升级错误或安装失败时 会出现Service Temporarily Unavailable错误,使网站前台后台都无法显示. 在操作完成的情况下,仍然出现这个错误时可以采用以下方法: 1.删除网站站 ...
- Sparse Graph---hdu5876(set+bfs+补图求最短路)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5876 题意:有一个含有n个点的无向图,已知图的补图含有m条边u, v:求在原图中,起点s到 ...
- Java学习-004-传世经典Helloworld
此文主要通过一个广为人知的传世经典应用(Helloworld)讲述 Java 程序的结构,Java 程序的开发步骤,以及 Java 程序是如何运行的. 一.开发 Java 程序步骤 开发 Java 程 ...
- NSOperationQueue 多线程
staticNSOperationQueue * queue; - (void)viewDidLoad { [superviewDidLoad]; queue = [[NSOperationQueue ...
- eclipse的快捷键大全
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当 ...