UVA 10498 Happiness(线性规划-单纯形)
Description
Prof. Kaykobad has given Nasa the duty of buying some food for the ACM contestents. Nasa decided to buy n different items. He then asked each of the mcontestents how much of each item they want to eat. They could not give any logical answer, they only want as much as they wish! Nasa knows quite well that they would only waste their food if they get as much as they want. He was determined not to let that happen.
So he tactfully found out from each of the contestents how much 'happiness' one gets from each piece of each item and what is the 'total happiness' over which one wastes food. It may be the case that someone gets 'zero' 'happiness' on some item(s). He decided that he would never let anyone have such amount of food that exceeds his 'total happiness'. He planned that he would give someone even a fraction of a piece of item, but never give anyone more than he needed!
He also decided that each would get exactly the same amount of each item so that no one can complain against him.
After planning all these, he finally realized that he has an infinite amount of money and hence, he would spend as much money as he can.
Input
Input contains data collected by Nasa on several days.
For each day,
The first line contains the integers n(3<=n<=20) and m(3<=m<=20).
The next line contains n real numbers, the per unit price of each item.
Each of the next m lines contain data (n+1 real numbers) of each contestents: first n are 'happiness' got from each item and the last one is the 'total happiness'.
Output
For the data collected in each day print in a single line the maximum amount of money Nasa can spend in taka rounded up to nearest integer. You can assume that there will be no such input which may cause serious floating point errors.
题目大意:某人要买套餐给m个人吃,每个人吃的套餐必须都是一样的。套餐由n种食品组成,每种食品的单位价格是已知的。由于口味不同,每个人每得到一单位的某种食品获得的满足度可能不一样,这些也是已知的。每个人满足度是有上限的,上限已知。求在不超过任何人的满足度上限的条件下,此人最多能花多少钱。(某种食品可以买实数单位)
思路:线性规划的模板题。可以参考IOI国家集训队论文《浅谈信息学竞赛中的线性规划——简洁高效的单纯形法实现与应用》(上面的题目大意也是来自这里……)或者《算法导论》。
代码(32MS):
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std; const double EPS = 1e-;
const int MAXN = ;
const int INF = 0x3fff3fff; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} double A[MAXN][MAXN], tA[MAXN][MAXN];
double b[MAXN], tb[MAXN], c[MAXN], tc[MAXN];
int N[MAXN], B[MAXN];
int n, m;
double v; bool init() {
N[] = B[] = v = ;
for(int i = ; i <= n; ++i) N[++N[]] = i;
for(int i = ; i <= m; ++i) B[++B[]] = n + i;
return true;
} void pivot(int l, int e) {
tb[e] = b[l] / A[l][e];
tA[e][l] = 1.0 / A[l][e];
for(int i = ; i <= N[]; ++i)
if(N[i] != e) tA[e][N[i]] = A[l][N[i]] / A[l][e];
for(int i = ; i <= B[]; ++i) {
tb[B[i]] = b[B[i]] - A[B[i]][e] * tb[e];
tA[B[i]][l] = -A[B[i]][e] * tA[e][l];
for(int j = ; j <= N[]; ++j)
if(N[j] != e) tA[B[i]][N[j]] = A[B[i]][N[j]] - tA[e][N[j]] * A[B[i]][e];
}
v += tb[e] * c[e];
tc[l] = -tA[e][l] * c[e];
for(int i = ; i <= N[]; ++i)
if(N[i] != e) tc[N[i]] = c[N[i]] - tA[e][N[i]] * c[e];
for(int i = ; i <= N[]; ++i) if(N[i] == e) N[i] = l;
for(int i = ; i <= B[]; ++i) if(B[i] == l) B[i] = e;
for(int i = ; i <= B[]; ++i) {
for(int j = ; j <= N[]; ++j)
A[B[i]][N[j]] = tA[B[i]][N[j]];
b[B[i]] = tb[B[i]];
}
for(int i = ; i <= N[]; ++i) c[N[i]] = tc[N[i]];
} bool simplex() {
while(true) {
int e = MAXN;
for(int i = ; i <= N[]; ++i)
if(c[N[i]] > EPS && N[i] < e) e = N[i];
if(e == MAXN) break;
double delta = -;
int l = MAXN;
for(int i = ; i <= B[]; ++i) {
if(sgn(A[B[i]][e]) > ) {
double tmp = b[B[i]] / A[B[i]][e];
if(delta == - || sgn(tmp - delta) < || (sgn(tmp - delta) == && B[i] < l)) {
delta = tmp;
l = B[i];
}
}
}
if(l == MAXN) return false;
pivot(l, e);
}
return true;
} int main() {
while(scanf("%d%d", &n, &m) != EOF) {
for(int i = ; i <= n; ++i) scanf("%lf", &c[i]);
for(int i = ; i <= m; ++i) {
for(int j = ; j <= n; ++j) scanf("%lf", &A[n + i][j]);
scanf("%lf", &b[n + i]);
}
init();
simplex();
printf("Nasa can spend %d taka.\n", (int)ceil(v * m));
}
}
研究发现那个用来保存新的矩阵的数组并不是必要的,于是删掉。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std; const double EPS = 1e-;
const int MAXN = ;
const int INF = 0x3fff3fff; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} double A[MAXN][MAXN];
double b[MAXN], c[MAXN];
int N[MAXN], B[MAXN];
int n, m;
double v; bool init() {
N[] = B[] = v = ;
for(int i = ; i <= n; ++i) N[++N[]] = i;
for(int i = ; i <= m; ++i) B[++B[]] = n + i;
return true;
} void pivot(int l, int e) {
b[e] = b[l] / A[l][e];
A[e][l] = 1.0 / A[l][e];
for(int i = ; i <= N[]; ++i) {
int &x = N[i];
if(x != e) A[e][x] = A[l][x] / A[l][e];
}
for(int i = ; i <= B[]; ++i) {
int &y = B[i];
b[y] -= A[y][e] * b[e];
A[y][l] = -A[y][e] * A[e][l];
for(int j = ; j <= N[]; ++j) {
int &x = N[j];
if(x != e) A[y][x] -= A[e][x] * A[y][e];
}
}
v += b[e] * c[e];
c[l] = -A[e][l] * c[e];
for(int i = ; i <= N[]; ++i) {
int &x = N[i];
if(x != e) c[x] -= A[e][x] * c[e];
}
for(int i = ; i <= N[]; ++i) if(N[i] == e) N[i] = l;
for(int i = ; i <= B[]; ++i) if(B[i] == l) B[i] = e;
} bool simplex() {
while(true) {
int e = MAXN;
for(int i = ; i <= N[]; ++i) {
int &x = N[i];
if(sgn(c[x]) > && x < e) e = x;
}
if(e == MAXN) break;
double delta = -;
int l = MAXN;
for(int i = ; i <= B[]; ++i) {
int &y = B[i];
if(sgn(A[y][e]) > ) {
double tmp = b[y] / A[y][e];
if(delta == - || sgn(tmp - delta) < || (sgn(tmp - delta) == && y < l)) {
delta = tmp;
l = y;
}
}
}
if(l == MAXN) return false;
pivot(l, e);
}
return true;
} int main() {
while(scanf("%d%d", &n, &m) != EOF) {
for(int i = ; i <= n; ++i) scanf("%lf", &c[i]);
for(int i = ; i <= m; ++i) {
for(int j = ; j <= n; ++j) scanf("%lf", &A[n + i][j]);
scanf("%lf", &b[n + i]);
}
init();
simplex();
printf("Nasa can spend %d taka.\n", (int)ceil(v * m));
}
}
UVA 10498 Happiness(线性规划-单纯形)的更多相关文章
- UVa 10498 Happiness! (线性规划)
题意 将N种食品分给m个参赛选手,一个单位的某食品给某个选手一定满足度,每个选手有一个最大满足度.为了避免浪费,分给每一个选手的食品都不超越选手的满足度.已知的各种食品的单价,求最多可以花的钱. 思路 ...
- 数学(线性规划):UVAoj 10498 Happiness
Problem GHappiness! Input: standard inputOutput: standard outputTime Limit: 3 seconds Prof. Kaykobad ...
- 【UOJ #179】线性规划 单纯形模板
http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...
- 【Uva 10498】满意值
Description Kaykobad教授把为ACM选手买饭的任务交给了Nasa.Nasa决定买n种不同的食物.然后他询问了m名选手对每种食物的需求量.选手们当然不会给出任何符合逻辑的回答,他们只是 ...
- 【UOJ#179】线性规划 单纯形
题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...
- UOJ.179.线性规划(单纯形)
题目链接 这写得还不错:http://www.cnblogs.com/zzqsblog/p/5457091.html 引入基变量\(x_{i+n}\),将约束\(\sum_{i=1}^m a_{ij} ...
- UVA10498 Happiness 【单纯形】
题目链接 UVA10498 题解 模板题 #include<algorithm> #include<iostream> #include<cstdlib> #inc ...
- 线性规划VB求解
线性规划VB求解 Rem 定义动态数组 Dim a() As Single, c() As Single, b() As Single, cb() As Single Dim aa() As Sing ...
- 机器学习-线性规划(LP)
线性规划问题 首先引入如下的问题: 假设食物的各种营养成分.价格如下表: Food Energy(能量) Protein(蛋白质) Calcium(钙) Price Oatmeal(燕麦) 110 4 ...
随机推荐
- nrf51822裸机教程-GPIOTE
GPIO通常都会具有中断功能,上一讲的GPIO中并没有涉及到中断的相关寄存器. 51822将GPIO的中断相关做成了一个单独的模块GPIOTE,这个模块不仅提供了GPIO的中断功能,同时提供了 通过t ...
- JVM学习笔记
1. JVM中的直接引用和符号引用 JVM在装载class文件的时候,会有一步是将符号引用解析为直接引用的过程. 那么这里的直接引用到底是什么呢? 对于指向“类型”[Class对象].类变量.类方法的 ...
- PHP实现QQ第三方登录
PHP实现QQ第三方登录 学习之前,请大家先看一下oAuth协议. 首先呢,我们进入QQ互联的官方网站 http://connect.qq.com登入我们自己的QQ号,没有QQ号的小伙伴可以忽略本篇博 ...
- 设计模式:迭代器模式(Iterator)
定 义:提供一种方法顺序访问一个集合对象中的各个元素,而又不暴露该对象的内部元素. C#中实现,foreach 遍历
- HTML与CSS的关系
1. HTML是网页内容的载体.内容就是网页制作者放在页面上想要让用户浏览的信息,可以包含文字.图片.视频等. 2. CSS样式是表现.就像网页的外衣.比如,标题字体.颜色变化,或为标题加入背景图片. ...
- Asp.Net MVC 路由
原文链接:http://www.asp.net/learn/mvc/ 在这篇教程中,我将为你介绍每个ASP.NET MVC应用程序都具有的一个重要功能,称作ASP.NET路由(ASP.NET Rout ...
- Magento 安装时文件权限 设置
http://www.magentocommerce.com/wiki/1_-_installation_and_configuration/magento_filesystem_permission ...
- Selenium2学习-024-WebUI自动化实战实例-022-网站不同分辨率下页面样式展示兼容性问题解决方案 -- 设置浏览器显示区域大小(无人值守,节约测试成本的福音,BOSS 最爱)
在 Web UI 自动化测试的过程中,通常会测试页面在不同分辨率下的显示效果,即在不同大小的显示器上全屏浏览器后的页面展示,此种测试方法需要购置不同大小的显示器,或者频繁的设置屏幕分辨率,不仅浪费了大 ...
- 分布式服务框架dubbo原理解析 转
alibaba有好几个分布式框架,主要有:进行远程调用(类似于RMI的这种远程调用)的(dubbo.hsf),jms消息服务(napoli.notify),KV数据库(tair)等.这个框架/工具/产 ...
- python笔记 - day7
python笔记 - day7 参考: http://www.cnblogs.com/wupeiqi/articles/5501365.html 面向对象,初级篇: http://www.cnblog ...