BZOJ3732 Network
Description
给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).
现在有 K个询问 (1 < = K < = 15,000)。
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Input
第一行: N, M, K。
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Output
对每个询问,输出最长的边最小值是多少。
Sample Input
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1
Sample Output
5
5
4
4
7
4
5
HINT
1 <= N <= 15,000
1 <= M <= 30,000
1 <= d_j <= 1,000,000,000
1 <= K <= 15,000
正解:倍增+最小生成树
解题报告:
今天考了,那就再发一遍吧。
又重新写了一遍,刚开始觉得是码农,结果20分钟不到就打完了...
显然最小生成树可以满足性质:任意两点之间最大边权最小,然后得到一棵最小生成树树之后就可以在上面跑倍增了。
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
int n,m,ans,ecnt,father[MAXN];
int first[MAXN],to[MAXM],next[MAXM],w[MAXM];
int deep[MAXN];
int f[MAXN][],g[MAXN][];
struct edge{
int x,y,z;
}e[MAXM]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline bool cmp(edge q,edge qq){ return q.z<qq.z; }
inline int find(int x){ if(father[x]!=x) father[x]=find(father[x]); return father[x]; }
inline void dfs(int x,int fa){
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
f[v][]=x; g[v][]=w[i]; deep[v]=deep[x]+; dfs(v,x);
}
} inline void lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
int t=; while((<<t)<=deep[x]) t++; t--;
for(int i=t;i>=;i--) if(deep[x]-(<<i)>=deep[y]) ans=max(ans,g[x][i]),x=f[x][i];
if(x==y) return ;
for(int i=t;i>=;i--) {
if(f[x][i]!=f[y][i]) {
ans=max(g[x][i],ans); ans=max(ans,g[y][i]);
x=f[x][i]; y=f[y][i];
}
}
ans=max(ans,g[x][]); ans=max(ans,g[y][]);
return ;
} inline void work(){
n=getint(); m=getint(); int p=getint();
for(int i=;i<=m;i++) e[i].x=getint(),e[i].y=getint(),e[i].z=getint();
sort(e+,e+m+,cmp); for(int i=;i<=n;i++) father[i]=i;
int r1,r2; int x,y;
for(int i=;i<=m;i++) {
r1=find(e[i].x); r2=find(e[i].y);
if(r1!=r2) {
father[r1]=r2; x=e[i].x; y=e[i].y;
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=e[i].z;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=e[i].z;
}
}
for(int i=;i<=n;i++) if(father[i]==i) { deep[i]=; dfs(i,); }
for(int j=;j<=;j++) for(int i=;i<=n;i++) f[i][j]=f[f[i][j-]][j-],g[i][j]=max(g[i][j-],g[f[i][j-]][j-]);
while(p--) {
x=getint(); y=getint();
ans=; lca(x,y);
printf("%d\n",ans);
}
} int main()
{
work();
return ;
}
BZOJ3732 Network的更多相关文章
- bzoj3732: Network(最小生成树+LCA)
3732: Network 题目:传送门 题解: 第一眼就看到最大边最小,直接一波最小生成树. 一开始还担心会错,问了一波肉大佬,任意两点在最小生成树上的路径最大边一定是最小的. 那么事情就变得简单起 ...
- Kruskal重构树学习笔记+BZOJ3732 Network
今天学了Kruskal重构树,似乎很有意思的样子~ 先看题面: BZOJ 题目大意:$n$ 个点 $m$ 条无向边的图,$k$ 个询问,每次询问从 $u$ 到 $v$ 的所有路径中,最长的边的最小值. ...
- BZOJ3732: Network(Kruskal重构树)
题意 Link 给出一张$n$个点的无向图,每次询问两点之间边权最大值最小的路径 $n \leqslant 15000, m \leqslant 30000, k \leqslant 20000$ S ...
- 【kruscal】【最小生成树】【块状树】bzoj3732 Network
跟去年NOIP某题基本一样. 最小生成树之后,就变成了询问连接两点的路径上的权值最大的边. 倍增LCA.链剖什么的随便搞. 块状树其实也是很简单的,只不过每个点的点权要记录成“连接其与其父节点的边的权 ...
- BZOJ-3732 Network 图论 最小生成树 倍增
题面 题意:给你N个点,M条边的无向图 (N<=15000,M<=30000)第j条边的长度为 dj (1<=dj<=1e9),然后K个询问 (1<=K<=2000 ...
- bzoj3732 Network(NOIP2013 货车运输)
Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_ ...
- BZOJ3732 Network(Kruskal重构树)
Kruskal重构树的模板题. 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N.图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: ...
- kruskal重构树
kruskal重构树 kruskal重构树,顾名思义,是在kruskal的时候顺便搞出来的一棵重构树,具体地说是一个堆. 先说说这个东西是怎么搞出来的吧:默认事先把边按边权从小到大排序,在kruska ...
- [算法模板]Kruskal重构树
[算法模板]Kruskal重构树 kruskal重构树是一个很常用的图论算法.主要用于解决u->v所有路径上最长边的最小值,就是找到\(u->v\)的一条路径,使路径上的最长边最小. 图片 ...
随机推荐
- document.write和innerHTML的区别
document.write是直接写入到页面的内容流,如果在写之前没有调用document.open, 浏览器会自动调用open.每次写完关闭之后重新调用该函数,会导致页面被重写. innerHTML ...
- Android自定义进度条颜色
这个没法了只能看源码了,还好下载了源码, sources\base\core\res\res\ 下应有尽有,修改进度条颜色只能找progress ,因为是改变样式,首先找styles.xml ? 1 ...
- ng-bind的使用
由于JS是单线程的,当HTML页面执行alert的时候,会中断下面代码的运行,所以为了良好的用户体验,当需要在页面使用{{name}}的时候,通常不这样直接输出,而是用ng-bind绑定model数据 ...
- 报错"the geometry has no Z values"处理
); //将Z值设置为0 //IPoint point = (IPoint)pGeo; //point.Z = 0; } else { IZAwa ...
- 搞懂function(*args,**kwargs)
给出一个例子: def foo(*args,**kwargs): print 'args=',args print 'kwargs=',kwargs print '------------------ ...
- iOS原生地图开发详解
在上一篇博客中:http://my.oschina.net/u/2340880/blog/414760.对iOS中的定位服务进行了详细的介绍与参数说明,在开发中,地位服务往往与地图框架结合使用,这篇博 ...
- iOS开发之----常用函数和常数
介绍一下Objective-c常用的函数,常数变量 算术函数 [算术函数] 函数名 说明 int rand() 随机数生成.(例)srand(time(nil)); //随机数初期化int val = ...
- 10Spring_AOP编程(传统编程)
注意我写这篇文章的思路,要想做切面编程,包含两个部分,通知和切点,通知是你要做哪些增强,切点是指你要拦截哪些方法.先介绍通知的定义再去介绍切点的定义.这篇文章我取名叫做Spring_AOP编程(传统编 ...
- Delphi7下SuperObject的JSON使用方法
uses superobject; procedure TForm1.FormCreate(Sender: TObject); var aJson: ISuperObject; aSuperArray ...
- Kinect for Windows SDK开发初体验(一)环境配置
1.开发环境需求 (1).硬件需求 a.需要拥有双核,2.66GHz以上的CPU. b.显卡支持Microsoft DirectX 9.0c; c.2GB的内存 d.Kinect for Window ...