希尔密码(Hill Password)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=, B=, C=... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果MOD26。注意用作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的

#include<stdio.h>  
#include<string.h>
#include<ctype.h>
#include<stdlib.h>

][];//转化矩阵
][];//单位矩阵[A E]
][];//矩阵的逆矩阵A^(-1)
][];//明文矩阵
][];//密文矩阵
int n;//矩阵的阶数
void input()//输入数据
{
    int i, j;
    ; i <= n; i++ )
        ; j <= n; j++ )
            A[i][j] = rand() % ;
    memcpy( a, A, sizeof( A ) );//将矩阵A复制给a
    ; i <= n; i++ )//将矩阵变成[a E]的形式,E为单位矩阵
    {
        ; j <= *n; j++ )
        {
            if( i + n == j )
                a[i][j] = ;
            else
                a[i][j] = ;
        }
    }
}

void output()     //输出函数
{
    int i,j;
    printf("矩阵A的元素\n");
    ; i <= n; i++ )
    {
        ; j <= n; j++ ){
            printf("%d ",A[i][j]);
        }
        printf("\n");
    }
    printf("A矩阵的逆矩阵B为\n");
    ; i <= n; i++ )//输出A矩阵的逆矩阵B
    {
        ; j <= n; j++ )
        {
            B[i][j] = a[i][j+n];
            printf("%d ",B[i][j]);

        }
        printf("\n");
    }
}

int Extend_Gcd( int a, int b, int &x, int &y )//扩展欧几里得算法
{
     )
    {
        x = ;
        y = ;
        return a;
    }
    int r = Extend_Gcd( b, a % b, x, y );
    int t = x;
    x = y;
    y = t - a / b * y;
    return r;
}

int ni( int a)//求逆a*x=1(mod n)
{
    int x, y;
    , x, y );
     )
         +  ) % ;
    else
        ;
}

int gaosi()//高斯-约当消元求A矩阵的逆矩阵B
{
    int i, j, k;
    ; k <= n; k++ )//高斯-约当消元
    {
        int Ni = ni( a[k][k] );
         ) ;
        ; i <=  * n; i++ )
            a[k][i] = ( a[k][i] *  Ni %  +  ) % ;
        ; i <= n; i++ )
        {
            if( i == k ) continue;
            ; j <=  * n; j++ )
                a[i][j] = ( ( a[i][j] - a[i][k] * a[k][j] %  ) %  +  ) % ;
        }
    }
    ;
}

void jiami()    //加密过程
{
    int i, j, k;
    ];
    char mingc;

    printf("请输入明文");
    scanf("%s",&mingstr);
    int len = strlen( mingstr );
    if( len % n )
    {
        for( i = len; i < len/n*n+n; i++)
            mingstr[i] = 'a';
        mingstr[i] = '\0';
    }
    puts( mingstr );
    int Len = strlen( mingstr );
    ; i <= Len/n; i++ )//将明文分成len/n段
    {
        ; j <= n; j++ )//求每一段的明文转换为矩阵
        {
            )*n+j-] >= )*n+j-] <= 'z' )
                ming[i][j] = mingstr[(i-)*n+j-] - 'a';
            else
                ming[i][j] = mingstr[(i-)*n+j-] - 'A';
        }
    }
    ; k <= Len/n; k++ )//求len/n段的密文矩阵
    {
        ; i <= n; i++ )//利用矩阵的乘法
        {
            mi[k][i] = ;
            ; j <= n; j++ )
                mi[k][i] = ( mi[k][i] + ming[k][j] * A[j][i] %  +  ) % ;
        }
    }
    printf("密文为");
    ; i <= Len/n; i++ )//输出密文
    {
        ; j <= n; j++ )
        {
            mingc = mi[i][j] + 'A';

            printf("%c",mingc);
        }

    }
    printf("\n");
}

void jiemi()   //解密过程
{
    int i, j, k;
    ];
    char mingc;
    printf("请输入密文");
    scanf("%s",&mistr);
    int len = strlen( mistr );
    ; i <= len/n; i++ )//将密文分成len/n段
    {
        ; j <= n; j++ )//求每一段的密文转换为矩阵
        {
            )*n+j-] >= )*n+j-] <= 'z' )
                mi[i][j] = mistr[(i-)*n+j-] - 'a';
            else
                mi[i][j] = mistr[(i-)*n+j-] - 'A';
        }
    }
    ; k <= len/n; k++ )//求len/n段的明文矩阵
    {
        ; i <= n; i++ )//利用矩阵的乘法
        {
            ming[k][i] = ;
            ; j <= n; j++ )
                ming[k][i] = ( ming[k][i] + mi[k][j] * B[j][i] %  +  ) % ;
        }
    }
    printf("明文为");
    ; i <= len/n; i++ )//输出明文
    {
        ; j <= n; j++ )
        {
            mingc = ming[i][j] + 'A';

            printf("%c",mingc);
        }

    }
    printf("\n");

}

int main()
{
int flag;
    do{
        printf( "1.加密2.解密3.退出\n");
        scanf("%d",&flag);
        )
        {printf("请输入加密矩阵的阶数n:");
        scanf("%d",&n);
        do{
            input();//数据输入
        }while( !gaosi() );
         output();
         jiami();}//加密过程
        )
        {jiemi();//解密过程
        }
        &&flag!=&&flag!=) printf("输入错误,请重新输入!\n");
    });
      ;
}

Hill密码的更多相关文章

  1. 信息安全-2:python之hill密码算法[原创]

    转发注明出处:http://www.cnblogs.com/0zcl/p/6106513.html 前言: hill密码算法我打算简要介绍就好,加密矩阵我用教材上的3*3矩阵,只做了加密,解密没有做, ...

  2. Hill密码解密过程(Java)

    Hill密码是一种传统的密码体系.加密原理:选择一个二阶可逆整数矩阵A称为密码的加密矩阵,也就是这个加密体系的密钥.加密过程: 明文字母依次逐对分组,例如加密矩阵为二阶矩阵,明文就两个字母一组,如果最 ...

  3. javascript实现playfair和hill密码算法

    时至期末,补习信息安全概论作业.恰巧遇古典密码学算法中的playfair算法和hill算法,用javascript语言实现起来是在有趣,边查百度边编码,顺便好好补习一下javascript基础. pl ...

  4. 4 多表代替密码之Hill 密码 2实现

    该解密方法的KEY 不是一个数或者一段字符串,而是一个矩阵, 比如有个3*3的KEY: 那么如果我们要加密一个长度为N的字符串, 那么把N除以3,分成M个3个字母组成的小段, 对每个小段尽心加密: 1 ...

  5. 4 多表代替密码之Hill 密码_1 矩阵工具类

    在说明Hill加密之前要先复习线性代数的知识,主要是关于矩阵的一些运算和概念. 一.矩阵的逆: 定义方阵M的逆矩阵应该满足M*M^-1==I,其中I是单位矩阵,比如: 但是这个地方是对英文字母进行加密 ...

  6. 信息安全-1:python之playfair密码算法详解[原创]

    转发注明出处: http://www.cnblogs.com/0zcl/p/6105825.html 一.基本概念 古典密码是基于字符替换的密码.加密技术有:Caesar(恺撒)密码.Vigenere ...

  7. 希尔密码(Hill Cipher)的实现

    原理应该不用多讲了,自己百度就可以. C++实现: #include <iostream> #include <string> #include <memory.h> ...

  8. ctf古典密码从0到

    本文首发于“合天智汇”公众号 作者:淡灬看夏丶恋雨 古典密码和现代密码的区别: 代换密码 单表代换密码 字符或数学型 凯撒密码 仿射密码 四方密码 培根密码 图表 标准银河字母 圣堂武士密码 猪圈密码 ...

  9. 对抗密码破解 —— Web 前端慢 Hash

    (更新:https://www.cnblogs.com/index-html/p/frontend_kdf.html ) 0x00 前言 天下武功,唯快不破.但在密码学中则不同.算法越快,越容易破. ...

随机推荐

  1. [js开源组件开发]js手机端浮层控件,并有多种弹出小提示,兼容pc端浏览器

    js dialog组件,包含alert和confirm的实现 本组件所有的资源均在github上可以查看源代码 GitHub 本dialog的组件的例子请在这里查看 demo dialog js di ...

  2. [leetcode] Count Primes

    Count Primes Description: Count the number of prime numbers less than a non-negative number, n click ...

  3. Lucene总体架构

    Lucene总的来说是:• 一个高效的,可扩展的,全文检索库.• 全部用Java实现,无须配置.• 仅支持纯文本文件的索引(Indexing)和搜索(Search).• 不负责由其他格式的文件抽取纯文 ...

  4. STL--双端队列(deque)和链表(list)

    双端队列(deque容器类): #include<deque>与vector 类似,支持随机访问和快速插入删除,它在容器中某一位置上的操作所花费的是线性时间. 与vector不同的是:de ...

  5. IOS枚举使用

    1.方法一: typedef enum { one = 0, two, }Name; 2.方法二: typedef NS_ENUM(NSInteger, name) { one, two }; 注:a ...

  6. android 之 adb 启动问题的一般解决办法

    有时,当我们打开eclipse准备运行Android项目时,虚拟机会启动不了,并且会出现下面的报错. [2015-10-07 16:47:46 - Game2048] ---------------- ...

  7. dubbo学习之服务消费者

    1.简介 上节讲了如何发布一个dubbo服务,这节主要讲如何进行消费,创建一个消费者. 2.详细步骤 2.1 项目目录结构 2.2 创建maven项目 这里演示时其实通过一个main方法就可以了,没必 ...

  8. 《数据结构与算法JavaScript描述》

    <数据结构与算法JavaScript描述> 基本信息 作者: (美)Michael McMillan 译者: 王群锋 杜欢 丛书名: 图灵程序设计丛书 出版社:人民邮电出版社 ISBN:9 ...

  9. Oracle日期周详解IW

    1 ORACLE中周相关知识描述 1.1           日期格式化函数 TO_CHAR(X [,FORMAT]):将X按FORMAT格式转换成字符串.X是一个日期,FORMAT是一个规定了X采用 ...

  10. TreeSize工具介绍

    TreeSize Professional 工具是一个功能强大且灵活方便的硬盘空间管理工具,能在 Windows 8/7/Vista/XP 或 Windows Server 2012年/2008年/2 ...