[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1. 粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.
2. 理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).
3. 右端项具有间断性.
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- me
PXKUNUIN6A- eyJsaWNlbnNlSWQiOiJQWEtVTlVJTjZBIiwibGljZW5zZWVOYW1lIjoi5b285bK4IDEiLCJhc3NpZ25l ZU5hbWU ...
- Ambari Metrics 详解
Ambari Metrics 原理 Ambari Metrics System 简称为 AMS,它主要为系统管理员提供了集群性能的监察功能.Metrics 一般分为 Cluster.Host 以及 S ...
- iBATIS 传MAP处理方式(value是list的方式)
1.前提条件 参数是map结构的数据 key:String 类型 value:list 集合 2.处理方式 遍历集合一般常规的方式使用iterate,这里也不例外了,如下 <iterate op ...
- Emit动态代理.NetCore迁移之旅
[前言] 前面我们介绍了Aop 从静态代理到动态代理:https://www.cnblogs.com/7tiny/p/9657451.html 我们在.NetFramework平台下使用微软提供的Em ...
- MongoDB小东西
在mongodb中,show users 和db.system.users.find() 都能查看账户的相关信息,但是这两个命令有什么区别么? db.system.users.find() 是查看全局 ...
- 572. Subtree of Another Tree(easy)
Given two non-empty binary trees s and t, check whether tree t has exactly the same structure and no ...
- OracleSql语句学习(一)
--SQL语句本身是不区分大小写的,每个关键字用空格隔开,为了增加可读性,退出所有关键字--全部大写,非关键字都小写SELECT SYSDATE FROM dual--创建表CREATE TABLE ...
- jQuery文件分片上传
前端代码: <input type="file" id="file6" multiple> <button type="button ...
- Bean的自动装配
再说自动装配之前,我们先聊一聊什么是手动装配. 手动装配就是我们在先前讲的那些,要自己给定属性,然后赋值 Spring IOC容器可以自动装配Bean,需要做的仅仅实在<bean>的aut ...
- 爬虫与request模块
一.爬虫简介 1.介绍 网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本.另外一些不常使用的名字还有蚂蚁. ...