[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1. 一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }u}&=\rho Fu; \eea \eeex$$ 或 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x}+\cfrac{1}{\rho }\cfrac{\p p}{\p x}&=F,\\ \cfrac{\p S}{\p t}+u\cfrac{\p S}{\p x}&=0; \eea \eeex$$ 再或 $$\beex \bea A(t,x,U)\cfrac{\p U}{\p t}+B(t,x,U)\cfrac{\p U}{\p x} =F(t,x,U), \eea \eeex$$ 其中 $$\bex A(t,x,U)=I,\quad B=\sex{\ba{ccc} u&\rho&0\\ \cfrac{c^2}{\rho}&u&\cfrac{p_S}{\rho}\\ 0&0&u \ea},\quad F=\sex{\ba{c}0\\F\\0 \ea}. \eex$$
2. 一阶拟线性双曲组
(1) 对一阶拟线性 PDE $$\bee\label{2_1_sq} A(t,x,U)\cfrac{\p U}{\p t}+B(t,x,U)\cfrac{\p U}{\p x} =F(t,x,U), \eee$$ 若对 $\forall\ (t,x,U)$, 特征方程 $$\bex |B-\lm A|=0 \eex$$ 有 $n$ 个实根 $$\bex \lm_1(t,x,U),\cdots,\lm_n(t,x,U), \eex$$ 且相应的广义左特征向量 $$\bex \eta^i:\ \eta^iB=\lm_i\eta^iA \eex$$ 构成完全组 $(|\eta^i_j|\neq 0)$. 则称 \eqref{2_1_sq} 为双曲型方程组.
(2) 若 $$\bex \lm_1(t,x,U)<\lm_2(t,x,U)<\cdots<\lm_n(t,x,U), \eex$$ 则称 \eqref{2_1_sq} 为严格双曲型方程组.
(3) 若曲线 $x=x(t)$ 满足 $$\bex \sev{B-\cfrac{\rd x}{\rd t}A}=0, \eex$$ 则称其为特征曲线.
(4) 例: 在非真空区域, 一维理想流体力学方程组为严格双曲型.
3. 均熵流 ($S=\const$): $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{c^2}{\rho}\cfrac{\p \rho}{\p x}&=F. \eea \eeex$$
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组的更多相关文章
- [物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfr ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- Hbase技术笔记
一.Hbase介绍 二.Hbase的Region介绍 三.Hbase的写逻辑介绍 四.Hbase的故障恢复 五.Hbase的拆分和合并 如下ppt所示: 下面就来针对各个部分的内容来进行详细的介绍: ...
- linux -- 添加、修改、删除路由
在日常的使用中,或者在服务器中,有两个网卡配置两个地址,访问不同的网络段,这种情况是非常常见的现象,但是,我们需要额外的添加路由表来决定发送的数据包经过正确的网关和interface才能正确的进行通信 ...
- webpack开发环境和生产环境切换原理
在package.json中有如下设置: "scripts": { "dev": "node build/dev-server.js" ...
- 创建DVWA环境时遇到的问题
前言:我下载了PHP Study,也按照步骤下载保存了DVWA,之后我又按照百度的准备登陆检查是否正确安装DVWA,于是,我登录了百度上查到的链接:http://localhost/DVWA-mast ...
- 详解Linux双网卡绑定之bond0
1.什么是bond? 网卡bond是通过多张网卡绑定为一个逻辑网卡,实现本地网卡的冗余,带宽扩容和负载均衡,在生产场景中是一种常用的技术.Kernels 2.4.12及以后的版本均供bonding模块 ...
- [LeetCode]2. 两数相加
题目链接:https://leetcode-cn.com/problems/add-two-numbers/ 题目描述: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 ...
- VSCode 必装的 10 个高效开发插件
本文介绍了目前前端开发最受欢迎的开发工具 VSCode 必装的 10 个开发插件,用于大大提高软件开发的效率. VSCode 的基本使用可以参考我的原创视频教程「VSCode 高效开发必装插件」. V ...
- PTA 天梯赛练习 7-11 玩转二叉树-二叉树重建
以前就思考过这个问题,但是没有深入的想过,这是一种叫二叉树重建的典型题目 如果给出中序和前序,求出后序遍历. 这道题则求的是交换儿子节点的层序遍历. 二叉树的重建应该怎么重建,首先我们知道,先根遍历, ...
- mybatis 配置文件全解
目录 properties settings typeAliases mappers properties mybatis配置文件中,可以像代码一样定义变量,然后在配置文件的其他地方使用,比如数据库连 ...
- Node之安装篇
本篇主要介绍node的安装与相关配置 官网: https://nodejs.org/en/ Linux: Windows: