3996: [TJOI2015]线性代数

题意:给出一个NN的矩阵B和一个1N的矩阵C。求出一个1*N的01矩阵A.使得

\(D=(A * B-C)* A^T\)最大。其中A^T为A的转置。输出D。每个数非负。


分析一下这个乘法的性质或者化简一下容易发现,\(C_i\)代价生效需要\(A_i=1\),\(B_{ij}\)贡献生效需要\(A_i =A_j=1\)

最小割

我成功的把dinic里的括号打错了...gg

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=300005, M=2e6+5, INF = 1e9;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, b[505][505], c[505], sum;
struct edge{int v, ne, c, f;} e[M];
int cnt=1, h[N], s, t;
inline void ins(int u, int v, int c) {
e[++cnt] = (edge){v, h[u], c, 0}; h[u] = cnt;
e[++cnt] = (edge){u, h[v], 0, 0}; h[v] = cnt;
} namespace mf {
int q[N], head, tail, vis[N], d[N];
bool bfs() {
memset(vis, 0, sizeof(vis));
head = tail = 1;
q[tail++] = s; d[s] = 0; vis[s] = 1;
while(head != tail) {
int u = q[head++];
for(int i=h[u];i;i=e[i].ne)
if(!vis[e[i].v] && e[i].c > e[i].f) {
int v = e[i].v;
vis[v] = 1; d[v] = d[u]+1;
q[tail++] = v;
if(v == t) return true;
}
}
return false;
}
int cur[N];
int dfs(int u, int a) {
if(u == t || a == 0) return a;
int flow = 0, f;
for(int &i=cur[u];i;i=e[i].ne)
if(d[e[i].v] == d[u]+1 && (f = dfs(e[i].v, min(a, e[i].c - e[i].f)) ) >0 ) {
flow += f;
e[i].f += f;
e[i^1].f -= f;
a -= f;
if(a == 0) break;
}
if(a) d[u] = -1;
return flow;
}
int dinic() {
int flow = 0;
while(bfs()) {
for(int i=s; i<=t; i++) cur[i] = h[i];
flow += dfs(s, INF);
}
return flow;
}
} void build() {
s = 0; t = n + n*n + 1;
for(int i=1; i<=n; i++) ins(s, i, c[i]), ins(i, t, b[i][i]);
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(i != j) {
int id = i*n+j;
ins(i, id, INF); ins(j, id, INF); ins(id, t, b[i][j]);
}
} int main() {
freopen("in", "r", stdin);
n = read();
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) b[i][j] = read(), sum += b[i][j];
for(int i=1; i<=n; i++) c[i] = read();
build();
int ans = mf::dinic();
printf("%d\n", sum - ans);
}

bzoj 3996: [TJOI2015]线性代数 [最小割]的更多相关文章

  1. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  2. bzoj 3996: [TJOI2015]线性代数【最小割】

    把转置矩阵看成逆矩阵吓傻了233 首先按照矩乘推一下式子: \[ D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i] \] \[ D=(\sum_ ...

  3. ●BZOJ 3996 [TJOI2015]线性代数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3996 题解: 好题啊.(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)首先,那个式子可 ...

  4. bzoj 3996: [TJOI2015]线性代数

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  5. [TJOI2015]线性代数(最小割)

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...

  6. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  7. 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1368  Solved: 832 Description 给 ...

  8. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  9. BZOJ 3996 线性代数 最小割

    题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...

随机推荐

  1. 强连通分量&hdu_1269&Codeforce 369D

    强连通分量 标签: 图论 算法介绍 还记得割点割边算法吗.回顾一下,tarjan算法,dfs过程中记录当前点的时间戳,并通过它的子节点的low值更新它的low,low值是这个点不通过它的父亲节点最远可 ...

  2. HTML5基础篇章1

    ①<!DOCTYPE>(声明文档类型): <!DOCTYPE>必须要声明在文档的第一行,而且要在html标签之前 . <!DOCTYPE>是一条规定页面使用那个ht ...

  3. c# excel 导入 与 导出(可直接用)

    c#操作excel方式很多 采用OleDB读取EXCEL文件: 引用的com组件:Microsoft.Office.Interop.Excel.dll   读取EXCEL文件 将EXCEL文件转化成C ...

  4. 浅析@Deprecated,调用方法时出现横线划掉样式

    Deprecated 这个注释是一个标记注释.所谓标记注释,就是在源程序中加入这个标记后,并不影响程序的编译,但有时编译器会显示一些警告信息. 那么Deprecated注释是什么意思呢?如果你经常使用 ...

  5. 一对多(多对一)关系中的inverse和cascade属性

    转载请标明出处 http://www.cnblogs.com/haozhengfei/p/6049276.html 首先说一下inverse: "inverse" 直译过来就是&q ...

  6. API接口签名验证2

    http://www.jianshu.com/p/d47da77b6419 系统从外部获取数据时,通常采用API接口调用的方式来实现.请求方和�接口提供方之间的通信过程,有这几个问题需要考虑: 1.请 ...

  7. DEDECMS万能标签{dede:sql}使用教程详解

    http://www.dede58.com/a/dedebq/2015/0226/1737.html 1.首页在后台单页文档管理里添加一个单页文档,内容编辑框输入你要的内容生成. 2.在需要调用单页文 ...

  8. 面试官最爱的volatile关键字

    在Java相关的岗位面试中,很多面试官都喜欢考察面试者对Java并发的了解程度,而以volatile关键字作为一个小的切入点,往往可以一问到底,把Java内存模型(JMM),Java并发编程的一些特性 ...

  9. eclipse代码编辑区字符串自动转义设置

    在做接口测试时,有时接口请求参数非常多,如果用java相关方法去拼接参数,难度较大,并且非常浪费时间,那如何快速将整个请求参数拼接成一个字符串呢?为了解决这个问题,只要简单配置下eclipse设置即可 ...

  10. C#动态设置匿名类型对象的属性

    用C#写WPF程序, 实现功能的过程中碰到一个需求: 动态设置对象的属性,属性名称是未知的,在运行时才能确定. 本来这种需求可以用 Dictionary<string, object> 实 ...