bzoj 3669: [Noi2014]魔法森林
bzoj 3669: [Noi2014]魔法森林
Description
为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。
魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。
只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。
由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。
Input
第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。
Output
输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。
Sample Input
4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17
【输入样例2】
3 1
1 2 1 1
Sample Output
32
【样例说明1】
如果小E走路径1→2→4,需要携带19+15=34个守护精灵;
如果小E走路径1→3→4,需要携带17+17=34个守护精灵;
如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;
如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。
综上所述,小E最少需要携带32个守护精灵。
【输出样例2】
-1
【样例说明2】
小E无法从1号节点到达3号节点,故输出-1。
HINT
2<=n<=50,000
0<=m<=100,000
1<=ai ,bi<=50,000
题解
此题有两种做法,一种是用LCT维护最小生成树(而然我并不会),另一种是用SPFA动态维护最短路:把a排序之后依次加边,同时用spfa维护最短路,可以得到所有边权a小于当前a的边所构成图的最短路,然后统计所有答案。可以证明复杂度和普通的spfa一样。
Code
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define ll long long
#define REP(i,a,b) for(register int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(register int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(register int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=,p=;char ch=getchar();
while(!((''<=ch && ch<='') || ch=='-'))ch=getchar();
if(ch=='-')p=-,ch=getchar();
while(''<=ch && ch<='')sum=sum*+ch-,ch=getchar();
return sum*p;
} const int maxn=2e5+; int n,m; struct edge {
int u,v,a,b;
};
edge ee[maxn*];
struct node {
int v,next,w;
};
node e[maxn*];
int start[maxn],cnt; void addedge(int u,int v,int w)
{
e[++cnt]={v,start[u],w};
start[u]=cnt;
} bool cmp(const edge x,const edge y)
{
return x.a<y.a;
} void init()
{
n=read();m=read();
REP(i,,m)
{
ee[i]={read(),read(),read(),read()};
}
sort(ee+,ee+m+,cmp);
} int dist[maxn*],vis[maxn];
#include<queue>
queue <int> q;
int spfa(int a1,int a2)
{
q.push(a1);q.push(a2);
vis[a1]=vis[a2]=;
do{
int u=q.front();q.pop();
EREP(i,u)
{
int v=e[i].v;
if(dist[v]>max(dist[u],e[i].w))
{
dist[v]=max(dist[u],e[i].w);
if(!vis[v])
{
vis[v]=;
q.push(v);
}
}
}
vis[u]=;
}while(!q.empty());
return dist[n];
}
#define inf 666666
void doing()
{
int ans=inf;
REP(i,,n)dist[i]=inf;
dist[]=;
REP(i,,m)
{
int u=ee[i].u,v=ee[i].v,A=ee[i].a,B=ee[i].b;
addedge(u,v,B);
addedge(v,u,B);
ans=min(ans,spfa(u,v)+A);
}
if(ans>=inf)cout<<-<<endl;
else cout<<ans<<endl;
} int main()
{
init();
doing();
return ;
}
bzoj 3669: [Noi2014]魔法森林的更多相关文章
- bzoj 3669: [Noi2014]魔法森林 动态树
3669: [Noi2014]魔法森林 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 363 Solved: 202[Submit][Status] ...
- BZOJ 3669: [Noi2014]魔法森林( LCT )
排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...
- bzoj 3669: [Noi2014]魔法森林 (LCT)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec ...
- bzoj 3669: [Noi2014]魔法森林 -- 动点spfa
3669: [Noi2014]魔法森林 Time Limit: 30 Sec Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心 ...
- [BZOJ 3669] [Noi2014] 魔法森林 【LCT】
题目链接:BZOJ - 3669 题目分析 如果确定了带 x 只精灵A,那么我们就是要找一条 1 到 n 的路径,满足只经过 Ai <= x 的边,而且要使经过的边中最大的 Bi 尽量小. 其实 ...
- 图论 BZOJ 3669 [Noi2014]魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- bzoj 3669: [Noi2014] 魔法森林 LCT版
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...
- 【刷题】BZOJ 3669 [Noi2014]魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
随机推荐
- PHP move_uploaded_file() 函数
PHP Filesystem 函数 定义和用法 move_uploaded_file() 函数将上传的文件移动到新位置. 若成功,则返回 true,否则返回 false. 语法 move_upload ...
- [机器学习]-[数据预处理]-中心化 缩放 KNN(二)
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果 正例 反例 正例 TP 真 ...
- Linux日志轮循实现(shell)
在Linux系统中,日志的使用非常频繁,那么对日志就需要一定策略的管理,包括存放目录的设计,log文件命名规则,历史log文件的存放,log目录的容量限制,另外还有日志轮循. 日志轮循就是,将过期的l ...
- css FlexBox 弹性盒子常用方法总结
总结一下弹性盒子常用的方法,弹性盒子的功能强大,这次我做了兼容性的felxbox,虽然代码多了一点,但在项目时候可以直接复制过来用,同时在项目上线的时候,如果这时候弹性盒子出了兼容问题,那就可急了~ ...
- _0_web_基础
创:18_3_2017修:20_3_2017 什么是前端? --在浏览器中展示内容以及处理请求 什么是浏览器? --一款能将网页内容展现给用户查看,并且让用户与网页交互的软件 什么是内核? --渲染引 ...
- Servlet开篇
Servlet开篇 前面我已经说过好多遍了,如何学习好一个东西其实就是2个问题: 1,这个东西是干嘛的?为什么要玩这个东西? 2,怎么样就玩好这个东西了?具体的应该玩这个东西的什么? 其实现在对于我来 ...
- 无废话XML--XML约束(DTD)
基本术语 一.序言Prolog:包括XML声明(XML Declaration)和文档类型声明(Document Type Declaration). 二.良构(well-formed ...
- JAVA中限制接口流量、并发的方法
JAVA中限制接口流量可以通过Guava的RateLimiter类或者JDK自带的Semaphore类来实现,两者有点类似,但是也有区别,要根据实际情况使用.简单来说, RateLimiter类是控制 ...
- 前端自动化测试神器-Katalon的基础用法
前言 最近由于在工作中需要通过Web端的功能进行一次大批量的操作,数据量大概在5000左右,如果手动处理, 完成一条数据的操作用时在20秒左右的话,大概需要4-5个人/天的工作量(假设一天8小时的工作 ...
- JSP内置对象值out对象及其它的一些常见方法
out对象: out对象是jspWriter类的实例,是向客户端输出内容常用的对象. 常用方法如下: void println() 向客户端打印字符串 void clear() 清除缓冲区的内容,如果 ...