BZOJ 4008 【HNOI2015】 亚瑟王
题目链接:亚瑟王
这道题好神啊TAT……果然我的dp还是太弱了……
一开始想了半天的直接dp求期望,结果最后WA的不知所云……
最后去翻了题解,然后发现先算概率,再求期望……新姿势\(get\)。
我们不妨把\(r\)轮看做\(r\)次出牌机会,然后令\(f_{i,j}\)表示考虑完前\(i\)张牌,还剩\(j\)次机会的概率。
然后我们从前往后一张张牌考虑过去。对第$i$张牌,枚举还剩$j$次机会,单独考虑一下:
若这张牌没有发动,那么概率为$(1-p_i)^jf_{i-1,j}$
若这张牌发动了,那么就是在还剩\(j+1\)次机会的时候打出这张牌。由于每张牌最多发动一次,那么概率为$(1-(1-p_i)^j)f_{i-1,j+1}$
于是我们得到了转移方程:$$f_{i,j}=(1-p_i)^jf_{i-1,j}+(1-(1-p_i)^j)f_{i-1,j+1}$$
然后预处理出$(1-p_i)^j$,一路推过去即可。
最后再枚举第$i$张牌在还剩$j$次机会时打出,用概率来算一下期望。当然这一步也可以在$dp$的时候就顺便解决。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define N 230 using namespace std;
typedef double llg; int T,n,r,a[N];
llg p[N],f[N][N],mi[N][N],ans; int main(){
File("a");
scanf("%d",&T);
for(int i=0;i<N;i++) mi[0][i]=mi[i][0]=1;
while(T--){
scanf("%d %d",&n,&r); ans=0;
for(int i=1;i<=n;i++){
scanf("%lf %d",&p[i],&a[i]);
mi[i][1]=1-p[i];
for(int j=2;j<=r+1;j++) mi[i][j]=mi[i][j-1]*(1-p[i]);
}
for(int i=0;i<=r;i++) f[0][i]=0;
for(int i=0;i<=n;i++) f[i][r+1]=0;
f[0][r]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=r;j++){
f[i][j]=f[i-1][j]*mi[i][j];
f[i][j]+=f[i-1][j+1]*(1-mi[i][j+1]);
ans+=f[i-1][j+1]*(1-mi[i][j+1])*a[i];
}
printf("%.10lf\n",ans);
}
return 0;
}
BZOJ 4008 【HNOI2015】 亚瑟王的更多相关文章
- BZOJ 4008: [HNOI2015]亚瑟王( dp )
dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...
- bzoj 4008: [HNOI2015]亚瑟王
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
- ●BZOJ 4008 [HNOI2015]亚瑟王
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4008题解: 概率dp,神仙题 如果我们可以求出每种牌被取到的概率f,那么最后期望造成的伤害也 ...
- BZOJ 4008: [HNOI2015]亚瑟王 [DP 概率 !!!]
传送门 题意: $r$轮$n$张卡牌,每一轮依次考虑每张卡牌,$p_i$概率发动造成$d_i$伤害后结束本轮或者继续考虑下一张 每张卡牌发动过之后以后都会跳过 求$r$轮之后的期望伤害 看了一节课出题 ...
- 4008: [HNOI2015]亚瑟王
4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. ...
- 【BZOJ】4008: [HNOI2015]亚瑟王
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 这题主要在于:先算概率,再算期望! 一轮一轮的计算似乎很复杂,每一轮它其实是可以看作 ...
- bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望
[bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...
- 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)
[BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...
- 【BZOJ4008】[HNOI2015]亚瑟王
[BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...
- 【BZOJ4008】[HNOI2015]亚瑟王 期望
[BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...
随机推荐
- 使用OAuth、Identity创建WebApi认证接口供客户端调用
前言 现在的web app基本上都是前后端分离,之前接触的大部分应用场景最终产品都是部署在同一个站点下,那么随着WebApi(Restful api)的发展前后端实现的完全分离,前端不在后端框架的页面 ...
- Rafy 框架 - 插件级别的扩展点
本章说明如何使用额外的插件(如客户化插件)对另一插件(如产品插件)进行扩展. 使用场景 在 产品线工程 中,项目的研发分为领域工程和应用工程.这个过程中会需要对领域工程中的内容进行大量的扩展. ...
- C# - 多线程 之 进程与线程
并行~并发 并发 Concurrency,逻辑上的同时发生,一个处理器(在不同时刻或者说在同一时间间隔内)"同时"处理多个任务.宏观上是并发的,微观上是按排队等待.唤醒.执行的步骤 ...
- Yii 2.x Behavior - 类图
yii\base\Component 继承这个类的类都具备扩展行为的能力
- windows7命令帮助大全
有关某个命令的详细信息,请键入 HELP 命令名ASSOC 显示或修改文件扩展名关联.ATTRIB 显示或更改文件属性.BREAK 设置或清除扩展式 CTRL+C 检查.BCDEDIT 设置启动数据库 ...
- php静态缓存简单制作
制作缓存的目的是为了让我们的页面运行更加快速,减少读取数据库内容的次数,给用户更好的体验,为此我们可以使自己的程序做一下缓存,并且设置一个缓存过期的时间,来保证与数据库的一致,当然并不是所有的程序都适 ...
- Android编码规范05
编码逻辑规范总结: 1.避免使用多个类放在一个文件里,除非是一次性使用的内部类 2.一个方法代码长度最好不要超过35行 3.原则上尽量不要修改自动生成的文件,如R文件 4.Final String 取 ...
- ListView之点击展开菜单
一.概述 ListView点击item显示菜单是要实现这样的效果: 需要实现的逻辑如下: 1)点击一个普通item,展开当前菜单,同时关闭其他菜单 2)点击一个已展开的菜单,隐藏当前菜单 3)将展开菜 ...
- 一款MVC5+EF+Bootstrap搭建的后台通用管理系统模板
最近闲来无事,就用MVC5+EF+Bootstrap搭建了一个通用的后台管理系统的模板,里面使用到的技术包括: MVC,EF,T4模板批量生成 Jquery,jqGrid Bootstrap DDD ...
- oncopy="document.selection.empty()"跟oncopy="return false"什么区别?
实现效果一样,禁止复制. 区别: oncopy="document.selection.empty()" 没禁止,只是把它复制的内容,变成空了: oncopy="ret ...