一、前述

数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识。

二、极限

1、例子

当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋于 0 的速度更快一些呢?

我们考察这两个函数的商的极限,

所以当 x → 0 的时候,sin(x) 与 tan(x) 是同样级别的无穷小。

2、相关定理

如果三个函数满足 f(x) ≤ g(x) ≤ h(x), 而且他们都在 x0 处有极 限,那么

重要极限:

三、微分学

微分学的核心思想: 逼近.

1、函数导数:

如果一个函数 f(x) 在 x0 附近有定义,而且存在极限。

那么 f(x) 在 x0 处可导且导数 f ′ (x0) = L.

无穷小量表述: 线性逼近。

Definition (函数的高阶导数)

如果函数的导数函数仍然可导,那么导数函数的导数是二阶导 数,二阶导数函数的导数是三阶导数. 一般地记为

或者进一步

导数是对函数进行线性逼近,高阶导数是对导数函数的进一步逼 近,因为没有更好的办法,所以数学家选择继续使用线性逼近.

Example (初等函数的导数)

2、微分学:多元函数

且 Lx, Ly 分别是 f 在 x, y 方向上的偏导数. 一般记为

3、Definition (高阶偏导数)

并且二阶偏导数为

4、Example (偏导数的例子)

5、求导法则

 6.总结

微分学的核心思想是逼近. 一阶导数:线性逼近 二阶导数:二次逼近 导数计算:求导法则

四、泰勒级数

1、泰勒/迈克劳林级数: 多项式逼近。

2、泰勒级数: 例子

3、应用

泰勒级数是一元微分逼近的顶峰,所以有关于一元微分逼近的问 题请尽情使用.

罗比塔法则

证明:

因为是在 x0 附近的极限问题,我们使用泰勒级数来思考这个问题

4、小结 (泰勒级数)

泰勒级数本质是多项式逼近

特殊函数的泰勒级数可以适当记一下

泰勒级数可以应用于很多与逼近相关的问题。

五、牛顿法与梯度下降法

很多机器学习或者统计的算法最后都转化成一个优化的问题. 也 就是求某一个损失函数的极小值的问题, 在本课范围内我们考虑 可微分的函数极小值问题.

1、优化问题

对于一个无穷可微的函数 f(x),如何寻找他的极小值点.

极值点条件。

全局极小值: 如果对于任何 x˜, 都有 f(x∗) ≤ f(˜x),那么 x∗ 就是全局极小值点.

局部极小值: 如果存在一个正数 δ 使得,对于任何满足 |x˜ − x∗| < δ 的 x˜, 都有 f(x∗) ≤ f(˜x),那么 x∗ 就是局部极 小值点.(方圆 δ 内的极小值点)

不论是全局极小值还是局部极小值一定满足一阶导数/梯度 为零,f ′ = 0 或者 ∇f = 0.

2、局部极值算法

这两种方法都只能寻找局部极值 这两种方法都要求必须给出一个初始点 x0

数学原理:牛顿法使用二阶逼近(等价于使用二阶泰勒级数),梯度下降法使用一阶逼近

牛顿法对局部凸的函数找到极小值,对局部凹的函数找到极 大值,对局部不凸不凹的可能会找到鞍点.

梯度下降法一般不会找到最大值,但是同样可能会找到鞍 点.

当初始值选取合理的情况下,牛顿法比梯度下降法收敛速度 快.

牛顿法要求估计二阶导数,计算难度更大.

3、牛顿法

首先在初始点 x0 处,写出二阶泰勒级数。

多变量函数二阶逼近

4、梯度下降法:多变量函数一阶逼近

如果函数 f(x) 是个多元函数,x 是一个向量. 在 x0 处对f做线性逼近。

5、小结 (牛顿法与梯度下降法)

牛顿法与梯度下降法本质上都是对目标函数进行局部逼近.

因为是局部逼近所以也只能寻找局部极值

牛顿法收敛步骤比较少,但是梯度下降法每一步计算更加简单,牛顿法不仅给出梯度的方向还给出具体应该走多少。梯度法的r只能自己定义。

不同的算法之间很难说哪一个更好,选择算法还要具体问题 具体分析(这也是数据科学家存在的意义之一)

梯度本身是向着最大方向的,加个负号才是向着最小方向的。

六、凸函数与琴生不等式

1、Definition (凸函数)

把如上定义中的 ≤ 换成 <, 那么这个函数就叫做严格凸函数。

2、(凸函数判断准则)

如果 f 是多元函数,x 是个向量, 那么 f 是凸函数的条件变为Hf 是一个半正定矩阵。

3、凸函数重要性质: 琴生不等式)

【数学基础篇】---详解极限与微分学与Jensen 不等式的更多相关文章

  1. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  2. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  3. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  4. CentOS 7 下编译安装lnmp之PHP篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...

  5. CentOS 7 下编译安装lnmp之MySQL篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...

  6. CentOS 7 下编译安装lnmp之nginx篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168   ...

  7. Canal:同步mysql增量数据工具,一篇详解核心知识点

    老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...

  8. java提高篇-----详解java的四舍五入与保留位

    转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...

  9. 组件--Fragment(碎片)第二篇详解

    感觉之前看的还是不清楚,重新再研究了一次 Fragment常用的三个类: android.app.Fragment 主要用于定义Fragment android.app.FragmentManager ...

随机推荐

  1. css 字体两端对齐

    我想作为一个前端工作者,总会遇到这样的场景,一个表单展示的字段标题有4个字也有2个字的时候,这样子同时存在想展示的美观一点,就需要字体两端对齐了,其实实现方式很简单,我针对其中一种来做下介绍,以后方法 ...

  2. ASP.NET Core Api网关Ocelot的中文文档

    架构图 入门 不支持 配置 路由 请求聚合 GraphQL 服务发现 微服务ServiceFabric 认证 授权 Websockets 管理 流量控制 缓存 QoS服务质量 转换Headers 转换 ...

  3. JeeSite数据分页与翻页

    本文章介绍的是JeeSite开源项目二次开发时的一些笔记,对于没有使用过JeeSite的可以不用往下看了,因为下面的代码是跟JeeSite二次开发相关的代码,不做JeeSite的二次开发,以下代码对您 ...

  4. 蚂蚁 RPC 框架 SOFA-RPC 初体验

    前言 最近蚂蚁金服开源了分布式框架 SOFA,楼主写了一个 demo,体验了一下 SOFA 的功能,SOFA 完全兼容 SpringBoot(当然 Dubbo 也是可以兼容的). 项目地址:Alipa ...

  5. nodejs环境 + 入门 + 博客搭建

    NodeJS:NodeJS是一个使用了Google高性能V8 引擎 的服务器端JavaScript实现.它提供了一个(几乎)完全非阻塞I/O栈,与JavaScript提供的闭包和匿名函数相结合,使之成 ...

  6. jdk和tomcat环境配置

    一.安装JDK和Tomcat 1,安装JDK:直接运行jdk-7-windows-i586.exe可执行程序,默认安装即可. 备注:路径可以其他盘符,不建议路径包含中文名及特殊符号. 2.安装Tomc ...

  7. HTML DOM innerHTML 属性及实现图片连续播放

    定义和用法 innerHTML 属性设置或返回表格行的开始和结束标签之间的 HTML. 语法 tablerowObject.innerHTML=HTML 实例 下面的例子返回了表格行的 inner H ...

  8. eclipse常用快捷键(windows下)

    ## eclipse常用快捷键(windows下) ## 保存 1.保存当前代码页: ctrl + s 2.保存所有代码页: ctrl + shift + s 代码补全与修正 1.代码快速修正: ct ...

  9. SSM-Spring-21:Spring中事物的使用案例

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 股票买卖案例(我会用三种开启事物的方法 代理工厂bean版的,注解版的,aspectj xml版的) 简单的介 ...

  10. CentOS7快速搭建LNMP环境

    名词解释: LNMP:Linux+Nginx+MySql+PHPLAMP:LInux+Apache+MySql+PHPNginx的正确读法应该是Engine X我们使用CentOS自带的YUM来安装 ...