并发和并行 | Python中实现多线程 threading 和多进程 multiprocessing

昨天晚上组会轮到我汇报技术内容,最近正在和 ray 以及 spark 打交道,索性讲一下并发和并行。反正大家都是管理学院的,平时很少接触这种,因此这个选题不大可能因为内容基础而贻笑大方。

本文摆一摆并发和并行。附上很简单的 Python 代码,涉及到自带库 threadingmultiprocessing 的使用。

并发和并行

咱们简单用多线程对应并发,多进程对应并行。多线程并发更强调充分利用性能;多进程并行更强调提升性能上限。

我用非常简单且不那么严谨的比喻来说明。

多线程

一个 CPU 相当于一个学生。

一个学生一周开一次组会,换句话说一周给老师汇报一次工作。

老师一般会给学生同时布置几个任务,比如做比赛、做项目、读论文,学生可能周一做做比赛、周二读读论文、周三做做项目... 到了组会,他就把三件事都拿出来汇报,老师很欣慰,因为在老师的视角里:学生这三件事是同时在做的。

多线程也是同一个道理,假设你的手机只有一块单核 CPU 。你的 CPU 这 0.01 秒用来播放音乐,下 0.01 秒用来解析网页... 在你的视角里:播放音乐和解析网页是同时进行的。你大可以畅快地边听音乐边网上冲浪

何谓充分利用性能? 如果这学生只有一项工作,那他这一周可能只需要花费两天来做任务,剩下时间摸鱼(针不搓,三点钟饮茶先!)。因此,我们用「多线程」来让学生实现『并发』,充分利用学生能力。

在实际情况中,多线程、高并发这些词语更多地出现在服务端程序里。比如一个网络连接由一个线程负责,一块 CPU 可以负责处理多个异步的请求,大大提升了 CPU 利用率。

多进程

多个 CPU ( CPU 的多核)相当于多个学生。

一个任务可以拆成几个任务相互协作、同时进行,则是多进程。

比如研究生课程,老师非得留个论文作业,都研究生了我去,留啥大作业。

那咱就多线程并行搞呗。确定了大概思路,剩下的一股脑写就行。咱队伍里一共甲乙丙丁四名同学,那就:

  • 甲同学负责 Introduction
  • 乙同学负责 Background
  • 丙同学负责 Related Works
  • 丁同学负责 Methodology

这是乙同学提出异议:不应该是先完成 Introduction 再写 Background ,一个个来嘛?

大哥,都研究生了嗷,作业糊弄糊弄差不多得了啊。让你写你就写。

可以预知,上述四部分同时进行,怎么也比一个人写四块要快。

所以说 多进程并行提升性能上限

在实际情况中,多进程更多地与高性能计算、分布式计算联系在一起。

Python 实现

首先声明咱的实验环境。

> python --version
Python 3.8.5

咱们设置个任务:求数的欧拉函数值。

def euler_func(n: int) -> int:
res = n
i = 2
while i <= n // i:
if n % i == 0:
res = res // i * (i - 1)
while (n % i == 0): n = n // i
i += 1
if n > 1:
res = res // n * (n - 1)
return res

求一个数的欧拉函数值可能很快,但是一堆数呢?

所以咱想着用并行完成这个任务。

咱们把任务分成三份。

task1 = list(range(2, 50000, 3))  # 2, 5, ...
task2 = list(range(3, 50000, 3)) # 3, 6, ...
task3 = list(range(4, 50000, 3)) # 4, 7, ... def job(task: List):
for t in task:
euler_func(t)

来看看平平无奇的正常串行。

@timer
def normal():
job(task1)
job(task2)
job(task3)

完成了 task1 再完成 task2 ... 行,没毛病。

看看多线程?

import threading as th

@timer
def mutlthread():
th1 = th.Thread(target=job, args=(task1, ))
th2 = th.Thread(target=job, args=(task2, ))
th3 = th.Thread(target=job, args=(task3, )) th1.start()
th2.start()
th3.start() th1.join()
th2.join()
th3.join()

再看看多进程?

import multiprocessing as mp

@timer
def multcore():
p1 = mp.Process(target=job, args=(task1, ))
p2 = mp.Process(target=job, args=(task2, ))
p3 = mp.Process(target=job, args=(task3, )) p1.start()
p2.start()
p3.start() p1.join()
p2.join()
p3.join()

上述代码的逻辑是这样的:

  • 我创建线程/进程,其生来的目的就是完成任务job(task1)job(task2)job(task3),注意这里函数名和参数被分开了target=job, args=(task1, )
  • 然后 start() ,告诉线程/进程:你可以开始干活了
  • 他们自己干自己的,咱们程序主逻辑还得继续往下运行
  • join() 这里,咱们是指让线程/进程阻塞住咱的主逻辑,比如p1.join()是指:p1不干完活,我主逻辑不往下进行(属于是「阻塞」)
  • 这样,我们的函数multcore结束后,一定其中的线程/进程任务都完成了

咱看看结果:

if __name__ == '__main__':

    print("同步串行:")
normal() print("多线程并发:")
mutlthread() print("多进程并行:")
multcore() # 下面是结果
同步串行:
timer: using 0.24116 s
多线程并发:
timer: using 0.24688 s
多进程并行:
timer: using 0.13791 s

结果不太对,按理说,多进程并行的耗时应该是同步串行的三分之一,毕竟三个同等体量的任务在同时进行。

多线程并发同步串行慢是应该的,因为多线程并发同步串行的算力是一样的,但是多线程并发得在各个任务间来回切换,导致更慢。

你问 @timer 是什么意思?哦,这个是我写的修饰器,如下。

def timer(func):
@wraps(func)
def inner_func():
t = time.time()
rts = func()
print(f"timer: using {time.time() - t :.5f} s")
return rts
return inner_func

不太明白『Python修饰器』的老铁,不如给我点个「在看」,再关注下我,咱们以后详细道来。

我是小拍,微信 PiperLHJ ,感谢关注与在看。

并发和并行 | Python中实现多线程 threading 和多进程 multiprocessing的更多相关文章

  1. python中的多线程【转】

    转载自: http://c4fun.cn/blog/2014/05/06/python-threading/ python中关于多线程的操作可以使用thread和threading模块来实现,其中th ...

  2. Python中的多线程编程,线程安全与锁(二)

    在我的上篇博文Python中的多线程编程,线程安全与锁(一)中,我们熟悉了多线程编程与线程安全相关重要概念, Threading.Lock实现互斥锁的简单示例,两种死锁(迭代死锁和互相等待死锁)情况及 ...

  3. python中的多线程编程与暂停、播放音频的结合

    先给两个原文链接: https://blog.csdn.net/u013755307/article/details/19913655 https://www.cnblogs.com/scolia/p ...

  4. python中的多线程

    一个程序可以理解为一个进程,这个进程有其代号,可以依据这个代号将其杀死. 一个进程肯定有且只有一个主线程,他可以有很多子线程. 运行一个任务如果可以有许多子线程同时去做,当然会提高效率. 但是,在py ...

  5. python中的多线程和多进程

    一.简单理解一下线程和进程 一个进程中可有多个线程,线程之间可共享内存,进程间却是相互独立的.打比方就是,进程是火车,线程是火车厢,车厢内人员可以流动(数据共享) 二.python中的多线程和多进程 ...

  6. Python 中 logging 日志模块在多进程环境下的使用

    因为我的个人网站 restran.net 已经启用,博客园的内容已经不再更新.请访问我的个人网站获取这篇文章的最新内容,Python 中 logging 日志模块在多进程环境下的使用 使用 Pytho ...

  7. 第十五章、python中的进程操作-开启多进程

    目录 第十五章.python中的进程操作-开启多进程 一.multprocess模块 二.multprocess.process模块 三.Process()对象方法介绍 四.Process()对象属性 ...

  8. 并发编程---线程 ;python中各种锁

    一,概念 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 --车间负责把资源整合到 ...

  9. 2016/1/2 Python中的多线程(1):线程初探

    ---恢复内容开始--- 新年第一篇,继续Python. 先来简单介绍线程和进程. 计算机刚开始发展的时候,程序都是从头到尾独占式地使用所有的内存和硬件资源,每个计算机只能同时跑一个程序.后来引进了一 ...

  10. Python中的多线程编程,线程安全与锁(一)

    1. 多线程编程与线程安全相关重要概念 在我的上篇博文 聊聊Python中的GIL 中,我们熟悉了几个特别重要的概念:GIL,线程,进程, 线程安全,原子操作. 以下是简单回顾,详细介绍请直接看聊聊P ...

随机推荐

  1. AOT漫谈专题(第六篇): C# AOT 的泛型,序列化,反射问题

    一:背景 1. 讲故事 在 .NET AOT 编程中,难免会在 泛型,序列化,以及反射的问题上纠结和反复纠错尝试,这篇我们就来好好聊一聊相关的处理方案. 二:常见问题解决 1. 泛型问题 研究过泛型的 ...

  2. AI五子棋_06 坐标表示到图形表示的算法 Python实现

    AI五子棋 第六步 恭喜你到达第六步! 你已经成功实现了公钥体系最为关键的部分.现在服务器相信你就是你了,下面开始你的战斗. 五子棋的棋盘有15×15个交点,一共有225个交点,我们可以在每一个交点上 ...

  3. SpringBoot读取properties文件配置项

    使用SpringBoot开发过程中,难免需要配置相关数据项,然后在Java代码中@Autowired注入并使用. 我们应该如何读取properties文件中的配置项呢? 基于SpringBoot项目, ...

  4. 手把手教会你使用Markdown【从入门到精通一篇就够了】

    目录 一.Markdown是什么 二.Markdown优点 三.Markdown的基本语法 3.1 标题 3.2 字体 3.3 换行 3.4 引用 3.5 链接 3.6 图片 3.7 列表 3.8 分 ...

  5. 看图认识Javascript

  6. 2-4 C++ const限定词

    目录 2.4.1 const之于基本类型(base type) 含义 编译过程 2.4.2 const之于引用 含义 作用 注意点 2.4.3 const之于指针 含义[两类] 变量定义的读法:从左往 ...

  7. CommonsCollections3(基于ysoserial)

    环境准备 JDK1.7(7u80).commons-collections(3.x 4.x均可这里使用3.2版本).javassist(3.12.1.GA) JDK:https://repo.huaw ...

  8. ubuntu apache默认没开启rewrite 如何开启

    注意看到 /etc/apache2/apache2.conf # Include module configuration:IncludeOptional mods-enabled/*.loadInc ...

  9. MySQL-8.3.0 innovation 创新版本YUM安装配置

    MySQL-8.3.0 innovation版本已发布了,想抢先体验一下最新的功能,可以用以下的方式快速在虚拟机上安装一下哈 服务器环境:[root@node213 ~]# cat /etc/redh ...

  10. 在vue中使用XLSX导出表格

    安装依赖 npm install file-saver xlsx -S 然后在需要的页面中引入依赖包 import FileSaver from 'file-saver'; import XLSX f ...