HDU 2516 取石子游戏 (找规律)
Problem Description
1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win".
Input
输入有多组.每组第1行是2<=n<2^31. n=0退出.
Output
先取者负输出"Second win". 先取者胜输出"First win".
参看Sample Output.
Sample Input
2
13
10000
0
Sample Output
Second win
Second win
First win
分析:
这是一道Fibonacci’s Game(斐波那契博弈)
斐波那契博弈模型,大致上是这样的:
有一堆个数为 n 的石子,游戏双方轮流取石子,满足:
\1. 先手不能在第一次把所有的石子取完;
\2. 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。
约定取走最后一个石子的人为赢家,求必败态。
(转)分析:
n = 2时输出second;
n = 3时也是输出second;
n = 4时,第一个人想获胜就必须先拿1个,这时剩余的石子数为3,此时无论第二个人如何取,第一个人都能赢,输出first;
n = 5时,first不可能获胜,因为他取2时,second直接取掉剩下的3个就会获胜,当他取1时,这样就变成了n为4的情形,所以输出的是second;
n = 6时,first只要去掉1个,就可以让局势变成n为5的情形,所以输出的是first;
n = 7时,first取掉2个,局势变成n为5的情形,故first赢,所以输出的是first;
n = 8时,当first取1的时候,局势变为7的情形,第二个人可赢,first取2的时候,局势变成n为6得到情形,也是第二个人赢,取3的时候,second直接取掉剩下的5个,所以n = 8时,输出的是second;
…………
从上面的分析可以看出,n为2、3、5、8时,这些都是输出second,即必败点,仔细的人会发现这些满足斐波那契数的规律,可以推断13也是一个必败点。
借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。n=12时,只要谁能使石子剩下8且此次取子没超过3就能获胜。因此可以把12看成8+4,把8看成一个站,等价与对4进行"气喘操作"。又如13,13=8+5,5本来就是必败态,得出13也是必败态。也就是说,只要是斐波那契数,都是必败点。
所以我们可以利用斐波那契数的公式:fib[i] = fib[i-1] + fib[i-2],只要n是斐波那契数就输出second。
代码:
#include<iostream>
using namespace std;
int main()
{
int n,fib[45];
int i,flag;
fib[0]=2;
fib[1]=3;
for(i=2; i<45; i++)
fib[i]=fib[i-1]+fib[i-2];
while(cin>>n&&n)
{
flag=0;
for(i=0; i<45; i++)
if(fib[i]==n)
{
cout<<"Second win\n";
flag=1;
break;
}
if(flag==0)
cout<<"First win\n";
}
return 0;
}
HDU 2516 取石子游戏 (找规律)的更多相关文章
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- HDU 2516 取石子游戏 (博弈论)
取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- HDU 2516 取石子游戏(FIB博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- HDU 2516 取石子游戏(斐波那契)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 2516 取石子游戏 (博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 2516 取石子游戏 (Fibonacci博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- {HDU}{2516}{取石子游戏}{斐波那契博弈}
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...
- HDU 2516 取石子游戏 斐波纳契博弈
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...
随机推荐
- nexus在linux上搭建
Maven 仓库的分类:(maven的仓库只有两大类) 1.本地仓库 2.远程仓库,在远程仓库中又分成了3种: 2.1 中央仓库 2.2 私服 2.3 其它公共库 有个maven私服可以很方便地管理我 ...
- ACM解题之在线翻译 Give Me the Number
Give Me the Number Time Limit: 2 Seconds Memory Limit: 65536 KB ...
- 组件式开发框架 craftyjs
想要少写代码,请用组件式开发吧.传统的oop,一直做着重复的事性. 先理解下概念 Entity 实体 An entity is just an ID Compone ...
- 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组
题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...
- 【bzoj2300】[HAOI2011]防线修建 离线+STL-set维护凸包
题目描述 给你(0,0).(n,0).(x,y)和另外m个点,除(0,0)(n,0)外每个点横坐标都大于0小于n,纵坐标都大于0. 输入 第一行,三个整数n,x,y分别表示河边城市和首都是(0,0), ...
- [BZOJ1503][NOI2004]郁闷的出纳员 无旋Treap
1503: [NOI2004]郁闷的出纳员 Time Limit: 5 Sec Memory Limit: 64 MB Description OIER公司是一家大型专业化软件公司,有着数以万计的员 ...
- QT样式表
QT样式表 一.QT样式表简介 1.QT样式表简介 QSS的主要功能是使界面的表现与界面的元素分离,使得设计皮肤与界面控件分离的软件成为可能. QT样式表是允许用户定制widgets组件外观的强大机制 ...
- [BJWC2018]Border 的四种求法
description luogu 给一个小写字母字符串\(S\),\(q\)次询问每次给出\(l,r\),求\(s[l..r]\)的\(Border\). solution 我们考虑转化题面:给定\ ...
- Linux学习笔记一:Linux配置java环境变量
一.安装JDK: 1.创建JDK的安装目录: sudo mkdir /usr/jdk 2.将jdk-7u25-linux-x64.tar.gz拷贝至/usr/jdk目录下 sudo cp jdk-7u ...
- 【PDF】HTML中嵌入pdf的简单方法
<embed src="> 或者你不想显示某些功能的话: <embed src=">