二次剩余-Cipolla
二次剩余 \(Cipolla\) 算法
概述
- 大概就是在模 \(p\) 意义下开根号,如求解方程\(x^2\equiv n(mod\ p)\).
- 这里只考虑 \(p\) 为素数的情况.若 \(p=2\) ,则\(x=0\ when\ n=0,x=1\ when\ n=1\).
- 若 \(p\) 为奇素数,定义勒让德符号:
\[
\lgroup\frac{n}{p}\rgroup =n^{\frac{p-1}{2}}
\]
- 则根据欧拉准则,
- 对于 \(\lgroup \frac{n}{p} \rgroup \equiv 1\) 的情况,我们随机取一个 \(a\) 使得 \(a^2-n\) 不为 \(p\) 的二次剩余,可证期望步数为 \(2\) .
- 记 \(\omega=\sqrt{a^2-n}\) ,定义一个新数域\(x+y\cdot\ \omega\),类似于复数,只是单位复数为\(\omega\).
- 那么 \(x\equiv \pm (a+\omega)^{\frac{p+1}{2}}\ (mod\ p)\),据拉格朗日定理可知虚数部分系数为 \(0\) .
- 简要论证,尝试倒推变形,
\[
x\equiv \pm (a+\omega)^{\frac{p+1}{2}}\\
x^2\equiv (a+\omega)^{p+1}\\
x^2\equiv (a+\omega)^p(a+\omega)
\]
- 注意到 \((a+\omega)^p\) 可用二项式定理展开,\((a+\omega)^p\equiv \sum_{i=0}^{p}C_p^i a_i \omega ^{a-i}\ (mod\ p)\).
- \(p\) 是个质数,.使用 \(Lucas\) 定理处理组合数,发现仅当\(i=0,i=n\)时组合数在模意义下才为非 \(0\) 的,仅计算\(i=0,i=n\),可得到\((a+\omega)^p\equiv a^p+\omega ^p\ (mod\ p)\).
- 得到这个式子后,继续对上面的式子变形,
\[
x^2\equiv (a+\omega)^p(a+\omega)\\
x^2\equiv (a^p+\omega^p)(a+\omega)
\]
- 注意到\(a^p\equiv a\) (费马小定理),而\(\omega ^p\equiv \omega * \omega^{p-1} \equiv \omega*(\omega ^2)^{\frac{p-1}{2}}\equiv \omega*(a^2-n)^{\frac{p-1}{2}}\equiv -\omega\).
- 继续变形,
\[
x^2\equiv (a^p+\omega^p)(a+\omega)\\
x^2\equiv(a-\omega)(a+\omega)\\
x^2\equiv a^2-\omega^2\\
x^2\equiv a^2-(a^2-n)\\
x^2\equiv n\ (mod\ p).
\]
- 这里的变形操作容易验证都是可逆的,可以一步一步推回去,就说明了有两个解,\(x\equiv \pm (a+\omega)^{\frac{p+1}{2}}\ (mod\ p)\).
- 时间复杂度为\(O(log^2p)\).
二次剩余-Cipolla的更多相关文章
- 二次剩余Cipolla算法学习笔记
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...
- 二次剩余 Cipolla算法
欧拉准则 \(a\)是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}}\equiv 1\pmod p\),\(a\)不是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}} ...
- 二次剩余&&Cipolla
目录 二次剩余 勒让德符号(legendre symbol) Cipolla's Algorithm. 代码 end 二次剩余 给定y和奇质数p,求x,使得\(x^2≡y(mod p)\) 勒让德符号 ...
- 【模板】【数论】二次剩余Cipolla算法,离散对数BSGS 算法
Cipolla LL ksm(LL k,LL n) { LL s=1; for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo; return s; } n ...
- URAL 1132 Square Root(二次剩余定理)题解
题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 l ...
- xgzc— math 专题训练(二)
费马小定理&欧拉定理 费马小定理: 如果\(p\)是一个质数,而整数\(a\)不是\(p\)的倍数,\(a^{p-1}\equiv1\pmod p\) 欧拉定理: 当\(a\)与\(n\)互质 ...
- 二次剩余定理及Cipolla算法入门到自闭
二次剩余定义: 在维基百科中,是这样说的:如果q等于一个数的平方模 n,则q为模 n 意义下的二次剩余.例如:x2≡n(mod p).否则,则q为模n意义下的二次非剩余. Cipolla算法:一个解决 ...
- 二次剩余的判定及Cipolla算法
二次剩余 ppp是奇素数.所有的运算都是在群Zp∗Z_{p}^{*}Zp∗中的运算.方程x2=a≠0x^2=a \neq 0x2=a̸=0问是否有解,以及解是什么?若有解,aaa就是模ppp的二次 ...
- 二次剩余从csdn
欧拉准则 模\(p\)意义下,\(a\)是二次剩余等价于\(a^{\frac{p-1}{2}}\equiv 1\),\(a\)不是二次剩余等价于\(a^{\frac{p-1}{2}}\equiv -1 ...
随机推荐
- [小问题笔记(五)] 用SQL加密字符串(MD5、SHA1),顺便解决读取数据加密后不一样的问题
这里用到SQL Server内置的函数 HashBytes(). select HashBytes('MD5','bubu') select HashBytes('SHA1','bubu') 以MD5 ...
- 在ajax请求下的缓存机制
1.在服务端加 header(“Cache-Control: no-cache, must-revalidate”);2.在ajax发送请求前加上 anyAjaxObj.setRequestHeade ...
- cocos2d-x入门三 分层设计框架
helloworld就是一个完整的框架,大致分为四个层次如下: 导演-------场景------图层-----精灵 Director-----Scene----Layer----Sprite 导演类 ...
- wampserver安装及安装中可能遇到的问题
首先wampserver是windows apache Mysql PHP 集成开发环境,即在windows下的apache.php和mysql的服务器.因此wampserver是一个服务器端应用程序 ...
- [转]通过rsync+inotify-tools+ssh实现触发式远程实时同步
文件的同步镜像在很多地方都需要用到,因此rsync这款免费软件得到了广泛的应用,包括在Windows平台上,都已经有了支持rsync的“cwRsyncServer”. 但是,我们一般都是通过结合cro ...
- 2-5-NFS服务器配置和autofs自动挂载-配置Samba服务器配置现实文件共享
大纲: NFS服务器运行原理 实战配置NFS服务器 配置Samba服务器配置现实文件共享 ----------------------------------------------- 问题: # 怎 ...
- shiro:10个过滤器;10个jsp标签;5个@注解
10个过滤器 过滤器简称 对应的java类 anon org.apache.shiro.web.filter.authc.AnonymousFilter authc org.apache.shiro. ...
- 004——数组(四)array_search() array_change_key_case() array_chunk() array_combine() array_diff() array_diff_key() array_diff_assoc
<?php /** * in_array() 判断一个内容是否在数组中: */ /*$arr=array(1,2,3,4,5); if (in_array('1',$arr,TRUE)){ // ...
- hdu4309
题解: 暴力枚举 然后网络流 代码: #include<iostream> #include<cstdio> #include<cstring> using nam ...
- 通过网页或Serverice远程系统网站(服务)所在服务器本地的应用程序(未成功)
近日接了一个奇葩需求,内容如题. 实现过程中遇到一些问题,特将实现过程记录于此,供备忘及参考. 首先尝试了正常启动进程的方法,代码如下: public string RunSPApp() { Proc ...