MR案例:WordCount改写
package demo0830; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import java.io.IOException;
import java.util.ArrayList; public class Demo0902 {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); if (args.length < 3) {
System.out.println("Usage: wordcount <input_path> <output_path> <keyword_list>");
return;
} //Add to target(静态方法)
String[] target_words = args[2].split(",");
for (String word : target_words) {
WCMap.addTargetWord(word.toLowerCase());
} Job job = Job.getInstance(conf);
job.setJarByClass(Demo0902.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(WCMap.class);
job.setReducerClass(WCReduce.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
}
public static class WCMap extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
private final static ArrayList<String> target_words = new ArrayList<String>(); public static void addTargetWord(String word) {
target_words.add(word);
} public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] items = value.toString().toLowerCase().split(" ");
for (String item : items) { //filter keyword
if (target_words.contains(item)) {
word.set(item);
context.write(word, one);
}
}
}
} public static class WCReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
}
MR案例:WordCount改写的更多相关文章
- MR案例:倒排索引
1.map阶段:将单词和URI组成Key值(如“MapReduce :1.txt”),将词频作为value. 利用MR框架自带的Map端排序,将同一文档的相同单词的词频组成列表,传递给Combine过 ...
- hadoop笔记之MapReduce的应用案例(WordCount单词计数)
MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...
- MR案例:Reduce-Join
问题描述:两种类型输入文件:address(地址)和company(公司)进行一对多的关联查询,得到地址名(例如:Beijing)与公司名(例如:Beijing JD.Beijing Red Star ...
- MR案例:小文件处理方案
HDFS被设计来存储大文件,而有时候会有大量的小文件生成,造成NameNode资源的浪费,同时也影响MapReduce的处理效率.有哪些方案可以合并这些小文件,或者提高处理小文件的效率呢? 1). 所 ...
- Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况
mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...
- MR案例:CombineFileInputFormat
CombineFileInputFormat是一个抽象类.Hadoop提供了两个实现类CombineTextInputFormat和CombineSequenceFileInputFormat. 此案 ...
- MR案例:倒排索引 && MultipleInputs
本案例采用 MultipleInputs类 实现多路径输入的倒排索引.解读:MR多路径输入 package test0820; import java.io.IOException; import j ...
- Hadoop基础------>MR框架-->WordCount
认识Mapreduce Mapreduce编程思想 Mapreduce执行流程 java版本WordCount实例 1. 简介: Mapreduce源于Google一遍论文,是谷歌Mapreduce的 ...
- MR案例:输出/输入SequenceFile
SequenceFile文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File).在SequenceFile文件中,每一个key-value对被看做是一条记 ...
随机推荐
- 【Python Programe】WSGI (Web Server Gateway Interface)
Part1: What is a Web server? 一个位于物理服务器上的网络服务器(服务器里的服务器),等待客户端去发送request,当服务器接收到request,就会生成一个respons ...
- 微软构建高效DevOps团队培训总结
9.21和9.22这两天参加了微软DevOps的培训,主要是围绕TFS2015的不少新功能来讲的,相比较之前我们一直使用TFS2013来管理团队,确实强大了不少,也更加实用了. 首先,什么是DevOp ...
- 二项分布。计算binomial(100,50,0.25)将会产生的递归调用次数(算法第四版1.1.27)
算法第四版35页问题1.1.27,估计用一下代码计算binomial(100,50,0.25)将会产生的递归调用次数: public static double binomial(int n,int ...
- Spark源码分析 – Deploy
参考, Spark源码分析之-deploy模块 Client Client在SparkDeploySchedulerBackend被start的时候, 被创建, 代表一个application和s ...
- Yii2的主从数据库设置
项目做大了,数据库主从还是不可少的.使用Yii框架开发,如何设置数据库的主从呢?其实很简单. 先说一个主数据库服务器和多个从数据库服务器的情况,修改配置文件 config/db.php ,其中 sla ...
- Mysql binlog 安全删除(转载)
简介: 如果你的 Mysql 搭建了主从同步 , 或者数据库开启了 log-bin 日志 , 那么随着时间的推移 , 你的数据库 data 目录下会产生大量的日志文件 shell > ll /u ...
- What does Quick Sort look like in Python?
Let's talk about something funny at first. Have you ever implemented the Quick Sort algorithm all by ...
- Linux命令 lsof使用
lsof(list open files)是一个列出当前系统打开文件的工具.在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件. lsof +d ...
- 64位win2003/win2008系统IIS6.0/7.5配置PHP的方法
64位win2003/win2008系统IIS6.0/7.5配置PHP的方法 32位的win2003系统配置PHP,估计很多人都已经驾轻就熟了,不过当遇到64位的系统时,估计又会遇上新的问题了.本文记 ...
- 读取Android设备的MAC地址
读取Android设备的MAC地址 AndroidUtil.java package com.csdn.android.util; import com.csdn.android.framewor ...