link

题意:

给一个模板串s和n个模式串,每个模式串有$a_i$种可取的串。现在要将n个模式串每个任取一种它可取的串,连接起来,记为串t,那么这种连接方式对答案的贡献为t在s中出现的次数。问所有连接方式的贡献之和。

$n\leq 100,|S|\leq 10^4.$

题解:

设f[i][j]表示使用前i个模式串,匹配前j位的贡献。对每个模式串的每种可能转移,使用hash判断是否匹配。

复杂度$\mathcal{O}(|S|\times \sum a_i)$。

花絮:

今天我生日> <,生快啦。

code:

 #include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long
#define inf 1000000001
#define y1 y1___
using namespace std;
char gc(){
static char buf[],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
#define gc getchar
ll read(){
char ch=gc();ll x=;int op=;
for (;!isdigit(ch);ch=gc()) if (ch=='-') op=-;
for (;isdigit(ch);ch=gc()) x=(x<<)+(x<<)+ch-'';
return x*op;
}
#define N 10005
#define M 105
#define mod 1000000007
#define seed 233
#define happy_birthday 20180731
int n,m,now,f[][N],h[N],pw[N],ans;//f[i][j]:使用前i个字符串,匹配前j位的匹配方案数
char str[N],s[N];
void upd(int &x,int y){x+=y;x-=x>=mod?mod:;}
void init(){
h[]=;pw[]=;
rep (i,,n){
h[i]=((ll)h[i-]*seed+str[i])%happy_birthday;
pw[i]=(ll)pw[i-]*seed%happy_birthday;
}
}
int cal(int x,int y){
return (h[y]+happy_birthday-(ll)h[x-]*pw[y-x+]%happy_birthday)%happy_birthday;
}
int main(){
m=read();
scanf("%s",str+);n=strlen(str+);
init();
now=;rep (i,,n) f[][i]=;//可以从任意位置开始
while (m--){
now^=;memset(f[now],,sizeof(f[now]));
for (int k=read();k;k--){
scanf("%s",s+);int l=strlen(s+);
int hsh=;rep (i,,l) hsh=((ll)hsh*seed+s[i])%happy_birthday;
rep (i,,n-l+)
if (cal(i,i+l-)==hsh) upd(f[now][i+l-],f[now^][i-]);
}
}
rep (i,,n) upd(ans,f[now][i]);
printf("%d\n",ans);
return ;
}

loj2576 「TJOI2018」str的更多相关文章

  1. 「TJOI2018」str

    碱基序列 题目描述 小豆参加了生物实验室.在实验室里,他主要研究蛋白质.他现在研究的蛋白质是由$k$个氨基酸按一定顺序构成的.每一个氨基酸都可能有$a$种碱基序列$s_{i,j}$构成. 现在小豆有一 ...

  2. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  3. 2018.06.26「TJOI2018」数学计算(线段树)

    描述 小豆现在有一个数 xxx ,初始值为 111 . 小豆有 QQQ 次操作,操作有两种类型: 111 $ m$ : x=x×mx=x×mx=x×m ,输出 xxx modmodmod MMM : ...

  4. 【LOJ】#2574. 「TJOI2018」智力竞赛

    题解 二分答案 求最小路径点覆盖 由于这里最小路径点覆盖,点是可重的,用floyd求出传递闭包(也就是求出,哪两点之间是可达的) 最后用这个floyd求出的数组建出一个新图,在这个图上跑普通的最小路径 ...

  5. Loj #3057. 「HNOI2019」校园旅行

    Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你 ...

  6. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  7. 「HAOI2018」字串覆盖

    「HAOI2018」字串覆盖 题意: ​ 给你两个字符串,长度都为\(N\),以及一个参数\(K\),有\(M\)个询问,每次给你一个\(B\)串的一个子串,问用这个字串去覆盖\(A\)串一段区间的最 ...

  8. 「HAOI2016」字符合并

    「HAOI2016」字符合并 题意: ​ 有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这\(k\)个字符确定.你 ...

  9. 「 深入浅出 」集合Set

    系列文章 「 深入浅出 」集合List 「 深入浅出 」java集合Collection和Map Set继承自Collection接口,不能包含有重复元素.本篇文章主要讲Set中三个比较重要的实现类: ...

随机推荐

  1. 《Troubleshooting SQL Server》读书笔记-CPU使用率过高(上)

    第三章 High CPU Utilization. CPU使用率过高问题很容易被发现,但是诊断却不是很容易.CPU使用过高很多时候会成为其它问题的替罪羊,所以在确认和故障诊断时要抽丝剥茧. 调查CPU ...

  2. 天梯赛 L2-012 关于堆的判断 (二叉树)

    将一系列给定数字顺序插入一个初始为空的小顶堆H[].随后判断一系列相关命题是否为真.命题分下列几种: "x is the root":x是根结点: "x and y ar ...

  3. 根据 plist 还原 图片

    1. python 环境自己配置(支持windows Mac ) 2. 把所有的 plist  和 大图片放到一个目录下 3.如果添加了 系统环境变量 就直接双击运行脚本,如果没有设置,把脚本拽到DO ...

  4. Go语言 8 反射

    文章由作者马志国在博客园的原创,若转载请于明显处标记出处:http://www.cnblogs.com/mazg/ Go学习群:415660935 8.1概念和作用 Reflection(反射)在计算 ...

  5. 一键切图 PS 动作 【收藏】

    使用方法 一键切图动作.zip 1. 下载动作 2. 打开PS 动作 窗口,导入动作 3. 选中图层后 点击 F2 一键切图 详情看原文链接 原文链接

  6. shell中$*与$@的区别

    $*所有的位置参数,被作为一个单词 注意:"$*"必须被""引用 $@ 与$*同义,但是每个参数都是一个独立的""引用字串,这就意味着参数被 ...

  7. Docker practice

    Docker 实践 目标 创建一个基于最新版Ubuntu的镜像,在该镜像中更新apt包源并安装NTP package,最后将该新镜像提交到本地私有的registry中. 本地创建私有Registry ...

  8. python之smtplib库学习

    # -*- coding:utf-8 -*- import smtplibfrom email.mime.text import MIMETextfrom email import encodersf ...

  9. ActiveMQ-Network of brokers集群模式

    概述 在ActiveMQ运行过程中,如果发生某个queue只有生产者没有消费者的情况时,消息就会产生积压.Network of brokers模式通过将积压的消息转发给处于同一network的其它br ...

  10. scrapy使用PhantomJS和selenium爬取数据

    1.phantomjs 安装 下载:http://phantomjs.org/download.html 解压: tar -jxvf phantomjs--linux-x86_64.tar.bz2 重 ...