Description

在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴。你被这个城市发达而美丽的市场所
深深吸引,决定定居于此,做一个商人。科巴有个集市,集市用从1到N的整数编号,集市之间通过M条单向道路连
接,通过每条道路都需要消耗一定的时间。在科巴的集市上,有K种不同的商品,商品用从1到K的整数编号。每个
集市对每种商品都有自己的定价,买入和卖出商品的价格可以是不同的。并非每个集市都可以买卖所有的商品:一
个集市可能只提供部分商品的双向交易服务;对于一种商品,一个集市也可能只收购而不卖出该商品或只卖出而不
收购该商品。如果一个集市收购一种商品,它收购这种商品的数量是不限的,同样,一个集市如果卖出一种商品,
则它卖出这种商品的数量也是不限的。为了更快地获得收益,你决定寻找一条盈利效率最高的环路。环路是指带着
空的背包从一个集市出发,沿着道路前进,经过若干个市场并最终回到出发点。在环路中,允许多次经过同一个集
市或同一条道路。在经过集市时,你可以购买或者卖出商品,一旦你购买了一个商品,你需要把它装在背包里带走
。由于你的背包非常小,任何时候你最多只能持有一个商品。在购买一个商品时,你不需要考虑你是否有足够的金
钱,但在卖出时,需要注意只能卖出你拥有的商品。从环路中得到的收益为在环路中卖出商品得到的金钱减去购买
商品花费的金钱,而一条环路上消耗的时间则是依次通过环路上所有道路所需要花费的时间的总和。环路的盈利效
率是指从环路中得到的收益除以花费的时间。需要注意的是,一条没有任何交易的环路的盈利效率为0。你需要求
出所有消耗时间为正数的环路中,盈利效率最高的环路的盈利效率。答案向下取整保留到整数。如果没有任何一条
环路可以盈利,则输出0。

Input

第一行包含3个正整数N,M和K,分别表示集市数量、道路数量和商品种类数量。
接下来的N行,第行中包含2K个整数描述一个集市Bi,1 Si,1 Bi,2 Si,2…Bik Si,k。
对于任意的1<=j<=k,整数和分别表示在编号为的集市上购买、卖出编号为的商品时的交易价格。
如果一个交易价格为-1,则表示这个商品在这个集市上不能进行这种交易。
接下来M行,第行包含3个整数Vp,Wp和Tp,表示存在一条从编号为Vp的市场出发前往编号为Wp的市场的路径花费Tp分钟。
1<=N<=100,1<=M<=9900。
如果在编号为的集市i中,编号为j的商品既可以购买又可以卖出
对于编号为P(1<=P<=M)的道路,保证Vp<>Wp且1<=Tp<=10^7
不存在满足1<=P < Q<=M的P,Q,使得(Vp,Wp)=(Vq,Wq) 。

输出包含一个整数,表示盈利效率最高的环路盈利效率,答案向下取整保留到整数。
如果没有任何一条环路可以盈利,则输出0。

Sample Input

4 5 2

10 9 5 2

6 4 20 15

9 7 10 9

-1 -1 16 11

1 2 3

2 3 3

1 4 1

4 3 1

3 1 1

Sample Output

2

在样例中,我们考虑下面两条环路,“1 - 2 - 3 - 1” 和 “1 - 4 - 3 - 1”。

考虑环路 “1 - 2 - 3 - 1” :这条环路消耗的总时间是 分钟。在这条环路中,

最佳的交易方式是:在编号为 1 的集市中购买编号为 2 的商品(花费的金钱为 5 );在编号

为 2 的集市中卖出编号为 2 的商品(得到的金钱为 15 ),然后立即购买编号为 1 的商品

(花费的金钱为 6 );带着编号为 1 的商品经过编号为 3 的集市,在回到编号为 1 的城市后

卖出(得到的金钱为 9 )。在这个环路中,总盈利为13。 这个环路的盈利效率为13/7 ,向下取整后为 1 。

考虑环路 “1 - 4 - 3 - 1” :这条环路消耗的总时间是 分钟。在这条环路中,

最佳的交易方式是:在编号为 1 的集市中购买编号为 2 的商品(花费的金钱为 5 );在编号

为 4 的集市中卖出编号为 2 的商品(得到的金钱为 11 );然后经过编号为 3 的集市回到编

号为 1 的城市。在这个环路中,总盈利为 6。 这个环路的盈利效率为6/3 ,向下取整后为 2 。

综上所述,盈利效率最高的环路的盈利效率为 2 。

01分数规划中的最优比例生成环问题,先floyed跑出最短路,在更新出最大收益,二分答案,spfa炮正环、

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define int long long using namespace std;
const int MAXN = ;
const int inf = 0x3f3f3f3f; int n,m,k,s[MAXN][MAXN],b[MAXN][MAXN];
int dp[MAXN][MAXN],map[MAXN][MAXN],ans;
int cnt[MAXN];
double dis[MAXN];
bool vis[MAXN]; inline bool check(double xx){
queue<int> q;
for(int i=;i<=n;i++) q.push(i),vis[i]=,dis[i]=,cnt[i]=;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=;
for(int i=;i<=n;i++)
if(dp[x][i]!=inf && i!=x){
int now=map[x][i]-dp[x][i]*xx;
if(dis[i]<=dis[x]+now){
dis[i]=dis[x]+now;
if(!vis[i]){
vis[i]=;
q.push(i);
if(++cnt[i]>=n) return true;
}
}
}
}
return false;
} inline void floyed(){
for(register int i=;i<=n;i++)
for(register int j=;j<=n;j++)
for(register int o=;o<=n;o++)
dp[i][j]=min(dp[i][j],dp[i][o]+dp[o][j]);
for(register int i=;i<=n;i++) dp[i][i]=;
} inline void DP(){
for(register int i=;i<=n;i++)
for(register int j=;j<=n;j++){
if(dp[i][j]!=inf && (i!=j))
for(register int o=;o<=k;o++){
if(b[i][o]==- || s[j][o]==-) continue;
map[i][j]=max(s[j][o]-b[i][o],map[i][j]);
}
}
// for(register int i=1;i<=n;i++){
// for(register int j=1;j<=n;j++)
// cout<<map[i][j]<<" ";
// cout<<endl;
// }
} inline void update(){
double l=0.0,r=1e9;
while(r-l>1e-){
double mid=(l+r)/;
if(check(mid)) l=mid;
else r=mid;
}
printf("%lld",(int)r);
} signed main(){
memset(dp,0x3f,sizeof(dp));
scanf("%lld%lld%lld",&n,&m,&k);
for(register int i=;i<=n;i++)
for(register int j=;j<=k;j++)
scanf("%lld%lld",&b[i][j],&s[i][j]);
for(register int i=;i<=m;i++){
int x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
dp[x][y]=z;
}floyed();DP();update();
return ;
}
 

APIO 2017 商旅 洛谷3778的更多相关文章

  1. BZOJ4898 & BZOJ5367 & 洛谷3778:[APIO2017]商旅——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4898 https://www.lydsy.com/JudgeOnline/problem.php? ...

  2. 洛谷3778 [APIO2017]商旅

    题目:https://www.luogu.org/problemnew/show/P3778 一看就是0/1分数规划.但不能直接套模板,因为有个商品种类的限制. 考虑从a买在b卖,商品种类根本没用,关 ...

  3. [APIO 2017] 商旅

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5367 [算法] 很明显的分数规划问题 预处理从一个点走到另一个点所获最大利润和最短路 ...

  4. [CodePlus 2017 11月赛&洛谷P4058]木材 题解(二分答案)

    [CodePlus 2017 11月赛&洛谷P4058]木材 Description 有 n棵树,初始时每棵树的高度为 Hi ,第 i棵树每月都会长高 Ai.现在有个木料长度总量为 S的订单, ...

  5. 2017普及组D1T3 洛谷P3956 棋盘

    2017普及组D1T3 洛谷P3956 棋盘 原题 题目描述 有一个m×m的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在 ...

  6. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  7. 洛谷 P3951 NOIP 2017 小凯的疑惑

    洛谷 P3951 NOIP 2017 小凯的疑惑 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付 ...

  8. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  9. 【洛谷P3749】[六省联考2017]寿司餐厅(网络流)

    洛谷 题意: 给出\(n\)份寿司,现可以选取任意多次连续区间内的寿司,对于区间\([l,r]\),那么贡献为\(\sum_{i=l}^r \sum_{j=i}^rd_{i,j}\)(对于相同的\(d ...

随机推荐

  1. 分布式项目中增加品牌前端页面出现Uncaught Error: [$injector:modulerr] bug后的原因以及改正方式

    分布式查询品牌页面时 controller路径正确访问,比如输入 http://localhost:8081/brand/findPage.do?page=3&rows=6 是可以正常显示数据 ...

  2. SQL LIKE 运算符

    SQL LIKE 运算符 在WHERE子句中使用LIKE运算符来搜索列中的指定模式. SQL LIKE 操作符 LIKE 操作符用于在 WHERE 子句中搜索列中的指定模式. 有两个通配符与LIKE运 ...

  3. 建模+线性dp——cf1201D

    这类题目要首先把模型建立起来,挑选一个好的状态能让dp方程简化很多 /* dp[i][0]表示从右到左,最后停在左端 dp[i][1]表示从左到右,最后停在右端 dp[i+1][0]=min(dis( ...

  4. hive自定义函数UDF UDTF UDAF

    Hive 自定义函数 UDF UDTF UDAF 1.UDF:用户定义(普通)函数,只对单行数值产生作用: UDF只能实现一进一出的操作. 定义udf 计算两个数最小值 public class Mi ...

  5. SP8222 NSUBSTR - Substrings(后缀自动机+dp)

    传送门 解题思路 首先建出\(sam\),然后把\(siz\)集合通过拓扑排序算出来.对于每个点只更新它的\(maxlen\),然后再从大到小\(dp\)一次就行了.因为\(f[maxlen-1]&g ...

  6. I. Five Day Couple--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 链接:https://www.nowcoder.com/acm/contest/104/H来源:牛客网 题目描述 ...

  7. JBoss、Tomcat、JBoss EAP、JBoss AS、wildfly,JBoss EAP安装部署,JBoss各个版本下载,JBoss允许远程访问

    感谢: https://www.cnblogs.com/invlong/p/5983334.html https://blog.csdn.net/mooncarp/article/details/78 ...

  8. 2.2 webpack

    webpack 介绍 webpack 是什么 为什么引入新的打包工具 webpack 核心思想 webpack 安装 webpack 使用 命令行调用 配置文件 webpack 配置参数 entry ...

  9. Java反射机制调用私有方法

    1.获取目标类: 每个类都有一个class属性,通过实体类的class属性获取: Class clazz = Person.class 通过对象获取.  Person p1 = new Person( ...

  10. 自从阿里买了Flink母公司以后,你不懂Flink就out了!

    个免费报名权限 Ps:小助理手动给大家发送资料,精力有限,仅限前100名免费领取,这份资料对于想要提升大数据技能进阶的小伙伴来说,将会是一份不可或缺的宝贵资料. 特别感谢飞总的部分原创支持!