Let us define a regular brackets sequence in the following way:

  1. Empty sequence is a regular sequence.
  2. If S is a regular sequence, then (S) and [S] are both regular sequences.
  3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

()[](())([])()[]()[()]

And all of the following character sequences are not:

([))(([)]([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1a2...an is called a subsequence of the string b1b2...bm, if there exist such indices 1 ≤ i1 < i2 < ... < in ≤ m, that aj=bij for all 1 ≤ j ≤ n.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

1

([(]

Sample Output

()[()]

紫书上有详解+代码,就不废话了直接贴代码:
 #include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = ;
char s[maxn];
int d[maxn][maxn];
int n;
inline bool match(char a,char b){
if((a=='('&&b==')')||(a=='['&&b==']')) return true;
else return false;
}
void dp(){
for(int i=;i<n;i++){
d[i+][i]=;
d[i][i]=;
} for(int i=n-;i>=;i--){
for(int j=i+;j<n;j++){
d[i][j]=maxn;
if(match(s[i],s[j]))
d[i][j]=min(d[i][j],d[i+][j-]);
for(int k=i;k<j;k++){
d[i][j]=min(d[i][j],d[i][k]+d[k+][j]);
}
}
}
}
void print(int i,int j){
if(i>j) return;
if(i==j){
if(s[i]=='('||s[i]==')') printf("()");
else printf("[]");
return;
}
int ans=d[i][j];
if(match(s[i],s[j])&&ans==d[i+][j-]){
printf("%c",s[i]);print(i+,j-);printf("%c",s[j]);
return;
}
for(int k=i;k<j;k++){
if(ans==d[i][k]+d[k+][j]){
print(i,k);print(k+,j);
return;
}
} }
int main(int argc, const char * argv[]) {
int T;
scanf("%d",&T);
getchar();
while(T--){
getchar();
memset(s, , sizeof s);
char ch;
for(int i=;(ch=getchar())!='\n';i++){
s[i]=ch;
}
n=strlen(s); dp();
print(,n-);
printf("\n");
if(T!=) printf("\n");
}
return ;
}

1626 - Brackets sequence——[动态规划]的更多相关文章

  1. UVa 1626 Brackets sequence (动态规划)

    题意:用最少的括号将给定的字符串匹配,输出最优解.可能有空行. 思路:dp. dp[i][j]表示将区间i,j之间的字符串匹配需要的最少括号数,那么 如果区间左边是(或[,表示可以和右边的字符串匹配, ...

  2. UVA 1626 Brackets sequence(括号匹配 + 区间DP)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=105116#problem/E 题意:添加最少的括号,让每个括号都能匹配并输出 分析:dp ...

  3. UVA 1626 Brackets sequence 区间DP

    题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...

  4. UVa 1626 - Brackets sequence(区间DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA - 1626 Brackets sequence (区间dp)

    题意:给定一个串,可能空串,或由'[',']','(',')'组成.问使其平衡所需添加最少的字符数,并打印平衡后的串. 分析:dp[i][j]表示区间(i,j)最少需添加的字符数. 1.递推. #in ...

  6. POJ 题目1141 Brackets Sequence(区间DP记录路径)

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27793   Accepted: 788 ...

  7. [caffe]linux下安装caffe(无cuda)以及python接口

    昨天在mac上折腾了一天都没有安装成功,晚上在mac上装了一个ParallelDesktop虚拟机,然后装了linux,十分钟就安装好了,我也是醉了=.= 主要过程稍微记录一下: 1.安装BLAS s ...

  8. [Swift]基础

    [Swift]基础 一, 常用变量 var str = "Hello, playground" //变量 let str1="Hello xmj112288" ...

  9. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

随机推荐

  1. Leetcode707.Design Linked List设计链表

    设计链表的实现.您可以选择使用单链表或双链表.单链表中的节点应该具有两个属性:val 和 next.val 是当前节点的值,next 是指向下一个节点的指针/引用.如果要使用双向链表,则还需要一个属性 ...

  2. ThinkPHP5.0中的build.php自动生成所需的目录结构的详细方法

    一.来到根目录下,找到bulid.php文件进行改写. 改写方法:保留常用的目录结构,其余按照需求改吧! 二.复制一份build.php文件到application目录下 此时根目录下的bulid.p ...

  3. SSM框架用JSON进行前后端数据传输

    一个根据用户id查找用户信息的简单功能,使用JSON进行数据的传输 前端代码 这里用bootstrap做简单的样式美化,中间留了个div用来异步的显示查询结果,ajax进行前端的数据传输(class内 ...

  4. 批量或者选择导出datagrid列表数据到表格

    //导出项目信息 function exportXmxx(){ //判断是否选择站址 var index = $("#dgObj").datagrid('getChecked'); ...

  5. @codeforces - 793G@ Oleg and chess

    目录 @description - translation@ @solution@ @part - 1@ @part - 2@ @part - 3@ @part - 4@ @accepted code ...

  6. Vue电商后台管理系统项目第2天-首页添加表格动态渲染数据&分页

    0x01.使用Github学习的姿势 基于昨天的内容,今天的内容需要添加几个单文件组件,路由文件也需要做相应的增加,今天重点记录使用Element-UI中的表格组件实现数据动态渲染的实现流程和分页功能 ...

  7. 4818 Largest Empty Circle on a Segment (几何+二分)

    ACM-ICPC Live Archive 挺水的一道题,直接二分圆的半径即可.1y~ 类似于以前半平面交求核的做法,假设半径已经知道,我们只需要求出线段周围哪些位置是不能放置圆心的即可.这样就转换为 ...

  8. USDT钱包安装

    安装USDT钱包 wget https://bintray.com/artifact/download/omni/OmniBinaries/omnicore-0.4.0-x86_64-linux-gn ...

  9. hdu 1596 find the safest road (变形SP && dij+heap)

    Problem - 1596 变形最短路问题,给出邻接矩阵,要求求出给定点对间安全率最大值. 这题可以用dijkstra+heap来做.对于每一个查询,做一次dij即可. 代码如下: #include ...

  10. H3C 专线连接模型