Let us define a regular brackets sequence in the following way:

  1. Empty sequence is a regular sequence.
  2. If S is a regular sequence, then (S) and [S] are both regular sequences.
  3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

()[](())([])()[]()[()]

And all of the following character sequences are not:

([))(([)]([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1a2...an is called a subsequence of the string b1b2...bm, if there exist such indices 1 ≤ i1 < i2 < ... < in ≤ m, that aj=bij for all 1 ≤ j ≤ n.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

1

([(]

Sample Output

()[()]

紫书上有详解+代码,就不废话了直接贴代码:
 #include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = ;
char s[maxn];
int d[maxn][maxn];
int n;
inline bool match(char a,char b){
if((a=='('&&b==')')||(a=='['&&b==']')) return true;
else return false;
}
void dp(){
for(int i=;i<n;i++){
d[i+][i]=;
d[i][i]=;
} for(int i=n-;i>=;i--){
for(int j=i+;j<n;j++){
d[i][j]=maxn;
if(match(s[i],s[j]))
d[i][j]=min(d[i][j],d[i+][j-]);
for(int k=i;k<j;k++){
d[i][j]=min(d[i][j],d[i][k]+d[k+][j]);
}
}
}
}
void print(int i,int j){
if(i>j) return;
if(i==j){
if(s[i]=='('||s[i]==')') printf("()");
else printf("[]");
return;
}
int ans=d[i][j];
if(match(s[i],s[j])&&ans==d[i+][j-]){
printf("%c",s[i]);print(i+,j-);printf("%c",s[j]);
return;
}
for(int k=i;k<j;k++){
if(ans==d[i][k]+d[k+][j]){
print(i,k);print(k+,j);
return;
}
} }
int main(int argc, const char * argv[]) {
int T;
scanf("%d",&T);
getchar();
while(T--){
getchar();
memset(s, , sizeof s);
char ch;
for(int i=;(ch=getchar())!='\n';i++){
s[i]=ch;
}
n=strlen(s); dp();
print(,n-);
printf("\n");
if(T!=) printf("\n");
}
return ;
}

1626 - Brackets sequence——[动态规划]的更多相关文章

  1. UVa 1626 Brackets sequence (动态规划)

    题意:用最少的括号将给定的字符串匹配,输出最优解.可能有空行. 思路:dp. dp[i][j]表示将区间i,j之间的字符串匹配需要的最少括号数,那么 如果区间左边是(或[,表示可以和右边的字符串匹配, ...

  2. UVA 1626 Brackets sequence(括号匹配 + 区间DP)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=105116#problem/E 题意:添加最少的括号,让每个括号都能匹配并输出 分析:dp ...

  3. UVA 1626 Brackets sequence 区间DP

    题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...

  4. UVa 1626 - Brackets sequence(区间DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA - 1626 Brackets sequence (区间dp)

    题意:给定一个串,可能空串,或由'[',']','(',')'组成.问使其平衡所需添加最少的字符数,并打印平衡后的串. 分析:dp[i][j]表示区间(i,j)最少需添加的字符数. 1.递推. #in ...

  6. POJ 题目1141 Brackets Sequence(区间DP记录路径)

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27793   Accepted: 788 ...

  7. [caffe]linux下安装caffe(无cuda)以及python接口

    昨天在mac上折腾了一天都没有安装成功,晚上在mac上装了一个ParallelDesktop虚拟机,然后装了linux,十分钟就安装好了,我也是醉了=.= 主要过程稍微记录一下: 1.安装BLAS s ...

  8. [Swift]基础

    [Swift]基础 一, 常用变量 var str = "Hello, playground" //变量 let str1="Hello xmj112288" ...

  9. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

随机推荐

  1. window10下载安装jieba

    下载安装jieba的过程如下: 1 下载jieba 2 将其解压到E:\python2,如图所示: 3 在桌面左下角搜索框中输入"运行",之后输入"cmd".再 ...

  2. JavaSript中的正则表达式

    正则表达式是对字符串操作的逻辑公式,表达了对字符串的一种过滤逻辑. 相对于.NET和Perl,JS对正则表达式的支持相当朴素,或者说JS的正则表达式是perl正则表达式的一个子集. 一.正则表达式引擎 ...

  3. PHPCMS快速建站系列

    模板标签   {pc:content action="position" posid="2" order="id DESC" num=&qu ...

  4. HDU 4217

    点击打开题目链接 题型就是数据结构.给一个数组,然后又k次操作,每次操作给定一个数ki, 从数组中删除第ki小的数,要求的是k次操作之后被删除的所有的数字的和. 简单的思路就是,用1标记该数没有被删除 ...

  5. 【Leetcode栈】有效的括号(20)

    题目 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 1,左括号必须用相同类型的右括号闭合. 2,左括号必须以正确的顺序闭合. 注意 ...

  6. 在IDEA中实战Git 合并&提交&切换&创建分支

    工作中多人使用版本控制软件协作开发,常见的应用场景归纳如下: 假设小组中有两个人,组长小张,组员小袁 场景一:小张创建项目并提交到远程Git仓库 场景二:小袁从远程Git仓库上获取项目源码 场景三:小 ...

  7. Java面向对象----继承概念,super关键字

    继承概念: 继承需要符合的关系  is-a  , 父类通用更抽象,子类更特殊更具体 类之间的关系 继承体现 组合体现 实现接口体现 继承的意义 代码重用 体现不同抽象层次 extends关键字 Sup ...

  8. React Native错误汇总(持续更新)

    错误1 Element type is invalid-: 错误描述: Element type is invalid: expected a String(for built-in componen ...

  9. P4930「FJ2014集训」采药人的路径

    题目:P4930「FJ2014集训」采药人的路径 思路: 这篇不算题解,是让自己复习的,什么都没说清楚. 很久没有写点分治了,以前为了赶课件学的太急,板子都没打对就照着题解写题,导致学得很不扎实. 这 ...

  10. @NOIP2018 - D1T2@ 货币系统

    目录 @题目描述@ @题解@ @代码@ @题目描述@ 在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为 n.面额 ...