「分块系列」「洛谷P4168 [Violet]」蒲公英 解题报告
蒲公英
Description
我们把所有的蒲公英看成一个长度为\(n\)的序列(\(a_1,a_2,...a_n\)),其中\(a_i\)为一个正整数,表示第i棵蒲公英的种类的编号。
每次询问一个区间\([l,r]\),你需要回答区间里出现次数最多的是哪种蒲公英,如果有若干种蒲公英出现次数相同,则输出种类编号最小的那个。
注意,你的算法必须是在线的。
Input Data
第一行两整数\(n,m\),表示有\(n\)棵蒲公英,mm次询问。
接下来一行\(n\)个空格分隔的整数\(a_i\),表示蒲公英的种类。
接下来\(m\)行,每行两个整数\(l_0,r_0\)。令上次的查询结果为\(x\)(如果是第一次查询,则\(x=0\))。
令\(l=(l_0+x-1) mod (n+1), r=(r_0+x-1) mod (n+1)\)
Output Data
输出\(m\)行,每行一个整数,表示每次查询的结果。
Input / Output Sample
6 3
1 2 3 2 1 2
1 5
3 6
1 5
1
2
1
Data Limit
\(n \le 40000,m \le 50000,1 \le a_i \le 10^9n≤40000,m≤50000,1≤ai≤10^9\)
Problem Source
\(BZOJ2724\)
算法竞赛进阶指南\(P218-219\)
这道题和\(数列分块入门9\)蜜汁相似QAQ。
请自行参照我的\(数列分块入门9题解\)
这里仅放上代码QAQ——
代码
#include<bits/stdc++.h>
using namespace std;
#define MAXN 40005
int n, m, T;
int a[MAXN], b[MAXN], c[MAXN];
int d, f[2000][2000];
int s[MAXN];
vector<int> p[MAXN];
int Count( int l, int r, int x ){
return upper_bound( p[x].begin(), p[x].end(), r ) - lower_bound( p[x].begin(), p[x].end(), l );
}
int Get( int l, int r ){
if ( b[l] == b[r] ){
int ans1(0), ans2(0);
for ( int i = l; i <= r; ++i ){
int t(Count( l, r, a[i] ));
if ( t > ans2 ) ans1 = a[i], ans2 = t;
if ( t == ans2 ) ans1 = min( ans1, a[i] );
}
return ans1;
}
int ans1(f[b[l] + 1][b[r] - 1]), ans2(Count( l, r, ans1 ));
for ( int i = l; b[l] == b[i]; ++i ){
int t(Count( l, r, a[i] ));
if ( t > ans2 ) ans1 = a[i], ans2 = t;
if ( t == ans2 ) ans1 = min( ans1, a[i] );
}
for ( int i = r; b[r] == b[i]; --i ){
int t(Count( l, r, a[i] ));
if ( t > ans2 ) ans1 = a[i], ans2 = t;
if ( t == ans2 ) ans1 = min( ans1, a[i] );
}
return ans1;
}
int main(){
scanf( "%d%d", &n, &T );
d = 0;
while( ( 1 << d ) <= n ) d++;
d = (int)( n / sqrt( 2 * T * d ) );
for ( int i = 1; i <= n; ++i ){
scanf( "%d", &a[i] ); c[i] = a[i]; b[i] = ( i - 1 ) / d + 1;
}
sort( c + 1, c + n + 1 );
m = unique( c + 1, c + n + 1 ) - c - 1;
for ( int i = 1; i <= n; ++i ) a[i] = lower_bound( c + 1, c + m + 1, a[i] ) - c;
for ( int i = 1; i <= n; ++i ) p[a[i]].push_back(i);
for ( int i = 1; i <= b[n]; ++i ){
memset( s, 0, sizeof s );
int ans1(0), ans2(0);
for ( int j = ( i - 1 ) * d + 1; j <= n; ++j ){
s[a[j]]++;
if ( s[a[j]] == ans2 ) ans1 = min( ans1, a[j] );
if ( s[a[j]] > ans2 ) ans1 = a[j], ans2 = s[a[j]];
if ( b[j + 1] != b[j] ) f[i][b[j]] = ans1;
}
}
int x(0);
while( T-- ){
int l, r;
scanf( "%d%d", &l, &r );
l = ( l + x - 1 ) % n + 1; r = ( r + x - 1 ) % n + 1;
int t(min( l, r )); r = max( l, r ); l = t;
printf( "%d\n", x = c[Get( l, r )] );
}
return 0;
}
数列分块系列目录
蒲公英 <-
「分块系列」「洛谷P4168 [Violet]」蒲公英 解题报告的更多相关文章
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P4168 [Violet]蒲公英 解题报告
P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷1303 A*B Problem 解题报告
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...
- [洛谷P4168][Violet]蒲公英
题目大意:有$n(n\leqslant4\times10^4)$个数,$m(m\leqslant5\times10^4)$个询问,每次问区间$[l,r]$内的众数,若相同输出最小的,强制在线. 题解: ...
- 洛谷 P4168 [Violet] 蒲公英
历尽千辛万苦终于AC了这道题目... 我们考虑1个区间\([l,r]\), 被其完整包含的块的区间为\([L,R]\) 那么众数的来源? 1.\([l,L)\)或\((R,r]\)中出现的数字 2.\ ...
- 洛谷 P4137 Rmq Problem /mex 解题报告
P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...
随机推荐
- android学习——android 常见的错误 和 解决方法
1. Application does not specify an API level requirement! 解决方法:AndroidManifest.xml中 加入: <uses-sdk ...
- android学习——android项目的的目录结构
然后我们看一下Helloword的程序目录: 我们可以看到 大致有的文件: 1. MainHelloWorld.java文件 2. R.java文件 3. android.jar文件 4. RE ...
- 首次揭秘:阿里巴巴中间件在 Serverless 技术领域的探索
Serverless 话题涉及范围极广,几乎包含了代码管理.测试.发布.运维和扩容等与应用生命周期关联的所有环节.AWS Lambda 是 Serverless 领域的标志性产品,但如果将其应用于核心 ...
- 洛谷 2279 [HNOI2003]消防局的设立
Description 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了 ...
- 洛谷 1372 又是毕业季I
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- hdu 3982 Harry Potter and J.K.Rowling (半平面交 + 圆与多边形交)
Problem - 3982 题意就是给出一个圆心在原点半径为R的圆形蛋糕,上面有一个cherry,对蛋糕切若干刀,最后要求求出有cherry的那块的面积占整个蛋糕的多少. 做法显而易见,就是一个半平 ...
- codedecision P1113 同颜色询问 题解 线段树动态开点
题目描述:https://www.cnblogs.com/problems/p/11789930.html 题目链接:http://codedecision.com/problem/1113 这道题目 ...
- SQL 常见出现错误(附件、保存表、脱机、自增序列号 )
一.问题如图所示: 当填了某些数据,按“保存”时出现这个问题怎么解决? 1.打开“工具”-“选项”-“Designers” , 2.选择如下去勾: 二.当附加数据库的时候出现如下错误: 在附件文件上选 ...
- PHP会员找回密码功能的简单实现
文章来自:博客 http://www.jb51.net/article/91944.htm 设置思路 1.用户注册时需要提供一个E-MAIL邮箱,目的就是用该邮箱找回密码. 2.当用户忘记密码或用户名 ...
- Python3 dir() 函数
Python dir() 函数 描述 dir() 函数不带参数时,返回当前范围内的变量.方法和定义的类型列表:带参数时,返回参数的属性.方法列表.如果参数包含方法__dir__(),该方法将被调用.如 ...